
EINI
LogWing/WiMa/MP

Einführung in die Informatik für
Naturwissenschaftler und Ingenieure

Vorlesung 2 SWS WS 25/26

Dr. Lars Hildebrand
Fakultät für Informatik – Technische Universität Dortmund

lars.hildebrand@tu-dortmund.de
http://ls14-www.cs.tu-dortmund.de

Dr. Lars Hildebrand – EINI LogWing / WiMa 1

Kapitel 8
Dynamische Datenstrukturen

Listen
 Bäume

Unterlagen
► Dißmann, Stefan und Ernst-Erich Doberkat: Einführung in die

objektorientierte Programmierung mit Java, 2. Auflage.
München [u.a.]: Oldenbourg, 2002.
(→ ZB oder Volltext aus Uninetz)

► Echtle, Klaus und Michael Goedicke: Lehrbuch der
Programmierung mit Java. Heidelberg: dpunkt-Verl, 2000. (→

ZB)

Dr. Lars Hildebrand – EINI LogWing / WiMa 2

Thema

In diesem Kapitel:
• Prolog
• Wiederholung
• Bäume

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Lineare Liste als klassische, einfache dynamische Datenstruktur
► Grundkonstruktion: Objekte haben Referenz auf Objekt der eigenen

Klasse
► Typische Operationen: Anlegen, Finden von Elementen, Einfügen von

Elementen, Durchlaufen aller Elemente, Löschen eines Elementes
► Unterschiedliche Varianten

► einfache Liste, Liste mit Kopf- & Fuß-Attribut, doppelt verkettete
Liste

► Operationen lassen sich auch leicht rekursiv formulieren.
► Aufwand für Operationen (worst case)

► Einfügen am Anfang: O(1)
► Einfügen am Ende: ohne Fuß-Attribut O(N), mit Fuß-Attribut O(1)
► Suchen eines Elementes

• in unsortierter Liste: O(N)
• in sortierter Liste: O(N), aber Abbruch vor Listenende

(außer bei fehlendem Element)
► Einfügen eines Elementes in eine sortierte Liste: O(N)

3

Wiederholung

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Wiederholung
• Bäume Dr. Lars Hildebrand – EINI LogWing / WiMa

► Bäume sind…
► gerichtete, azyklische Graphen. Es gibt keine Zyklen

zwischen Mengen von Knoten.
► hierarchische Strukturen. Man kommt von einer Wurzel

zu inneren Knoten und letztlich zu Blättern.
► verkettete Strukturen, die dynamisch wachsen und

schrumpfen können.

► Binäre Bäume sind Bäume, in denen jeder Knoten maximal
zwei Söhne hat.

► Beispiele für die Anwendung binärer Bäume:
► Heapsort
► binäre Suchbäume

4

Allgemeines zu Bäumen I

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Wiederholung
• Bäume Dr. Lars Hildebrand – EINI LogWing / WiMa

5

Allgemeines zu Bäumen II

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Wiederholung
• Bäume Dr. Lars Hildebrand – EINI LogWing / WiMa

Wurzel

innerer
Knoten

Blatt

► Typische Zugriffsmethoden
► Einfügen einer Wurzel
► Einfügen eines inneren Knotens
► Entfernen der Wurzel
► Entfernen eines inneren Knotens
► Suchen
► Nach links/rechts navigieren

6

Allgemeines zu Bäumen III

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Wiederholung
• Bäume Dr. Lars Hildebrand – EINI LogWing / WiMa

► Aufgabe
Suche ein Element x in einer geordneten Menge.

► Grundidee: rekursiver Ansatz
► Beschaffe mittleres Element y der geordneten Menge
► falls x = y: fertig
► falls x < y: wende Verfahren rekursiv auf Teilmenge

kleinerer Elemente an
► falls x > y: wende Verfahren rekursiv auf Teilmenge

größerer Elemente an
► Beobachtung

► In jedem Schritt wird die zu betrachtende Menge
halbiert.

►  bei N Elementen also log2(N) Schritte

7

Binäre Suchbäume

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Wiederholung
• Bäume Dr. Lars Hildebrand – EINI LogWing / WiMa

► Grobe Idee (erfolgreiche Suche)
► Suchen in „geordneter Liste“ durch Überprüfen des

„mittleren“ Elementes + Fortsetzung in einer Hälfte
► Beispiel

8

Suche „in einer Hälfte“ I

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Wiederholung
• Bäume

987654321Position

4036191787642Wert

Dr. Lars Hildebrand – EINI LogWing / WiMa

► Grobe Idee (erfolgreiche Suche)
► Suchen in „geordneter Liste“ durch Überprüfen des

„mittleren“ Elementes + Fortsetzung in einer Hälfte
► Beispiel

► Suche nach 19
► Mitte: 5. Pos., Wert = 8
► 19 > 8
► rechten Abschnitt wählen

9

Suche „in einer Hälfte“ II

987654321Position

4036191787642Wert

Dr. Lars Hildebrand – EINI LogWing / WiMa

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Wiederholung
• Bäume

► Grobe Idee (erfolgreiche Suche)
► Suchen in „geordneter Liste“ durch Überprüfen des

„mittleren“ Elementes + Fortsetzung in einer Hälfte
► Beispiel

► Suche nach 19
► Mitte: 7. Pos., Wert = 19
► 19 gefunden, fertig

10

Suche „in einer Hälfte“ III

987654321Position

4036191787642Wert

Dr. Lars Hildebrand – EINI LogWing / WiMa

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Wiederholung
• Bäume

► Grobe Idee (erfolgreiche Suche)
► Suchen in „geordneter Liste“ durch Überprüfen des

„mittleren“ Elementes + Fortsetzung in einer Hälfte
► Beispiel

► Suche nach 5
► Mitte: 5. Pos., Wert = 8
► 5 < 8
► linken Abschnitt wählen

11

Suche „in einer Hälfte“ IV

987654321Position

4036191787642Wert

Dr. Lars Hildebrand – EINI LogWing / WiMa

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Wiederholung
• Bäume

► Grobe Idee (erfolgreiche Suche)
► Suchen in „geordneter Liste“ durch Überprüfen des

„mittleren“ Elementes + Fortsetzung in einer Hälfte
► Beispiel

► Suche nach 5
► Mitte: 2. Pos., Wert = 4
► 5 > 4
► rechten Abschnitt wählen

12

Suche „in einer Hälfte“ V

987654321Position

4036191787642Wert

Dr. Lars Hildebrand – EINI LogWing / WiMa

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Wiederholung
• Bäume

► Grobe Idee (erfolgreiche Suche)
► Suchen in „geordneter Liste“ durch Überprüfen des

„mittleren“ Elementes + Fortsetzung in einer Hälfte
► Beispiel

► Suche nach 5
► Mitte: 3. Pos., Wert = 6
► 5 < 6
► keine weitere Hälfte vorhanden
► 5 nicht gefunden, fertig

13

Suche „in einer Hälfte“ VI

987654321Position

4036191787642Wert

Dr. Lars Hildebrand – EINI LogWing / WiMa

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Wiederholung
• Bäume

14

Suche „in einer Hälfte“

► Aufgabe: Trage die Zahlen 17, 4, 36, 2, 8, 19, 40, 6, 7 in eine baumförmige
Struktur so ein,
– dass die Suche „in einer Hälfte“ effektiv unterstützt wird:

17

4 36

2 8

6

7

19 40
Warum hier?

Antwort später!

Dr. Lars Hildebrand – EINI LogWing / WiMa

15

Binäre Suchbäume I

Definition
► Sei B ein binärer Baum, dessen Knoten mit ganzen Zahlen beschriftet sind.

B heißt binärer Suchbaum, falls gilt:
► B ist leer oder
► der linke und der rechte Unterbaum von B

sind binäre Suchbäume,
► Ist w die Beschriftung der Wurzel, so sind

alle Elemente im linken Unterbaum kleiner
als w, alle Elemente im rechten Unterbaum
größer als w.

16

10

9 14

13 15

18

24

Dr. Lars Hildebrand – EINI LogWing / WiMa

► Der Aufbau eines binären Suchbaums erfolgt durch
wiederholtes Einfügen in einen (anfangs) leeren Baum.

► Die Reihenfolge der Werte, die in einen binären Suchbaum
eingefügt werden, bestimmt die Gestalt des Baumes.

► Eine Menge von Werten kann bei unterschiedlichen
Eingabereihenfolgen zu verschiedenen Repräsentationen
als Baum führen.

16

Binäre Suchbäume II

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Wiederholung
• Bäume Dr. Lars Hildebrand – EINI LogWing / WiMa

17

Binäre Suchbäume – Beispiele

1

2

3

3

2

1

2

1 3

2

1

3

Eingabefolge 1 2 3

Eingabefolge 3 2 1

Eingabefolge 3 1 2 Eingabefolge 2 1 3 oder 2 3 1

Dr. Lars Hildebrand – EINI LogWing / WiMa

18

Binäre Suchbäume – Die Klasse Knoten
01 class Knoten {

02 private int wert;

03 private Knoten links, rechts;

04

05 public Knoten(int i) {

06 wert = i; links = rechts = null; }

07

08 public void SetzeWert(int i) { wert = i; }

09 public int HoleWert() { return wert; }

10 public void SetzeLinks(Knoten k) { links = k; }

11 public Knoten HoleLinks() { return links; }

12 public void SetzeRechts(Knoten k) { rechts = k; }

13 public Knoten HoleRechts() { return rechts; }

14 };

Dr. Lars Hildebrand – EINI LogWing / WiMa

Algorithmus für das Einfügen von Knoten
► Gegeben seien ein binärer Suchbaum B und eine ganze Zahl

k, die in B eingefügt werden soll. Es können vier Fälle
auftreten:
► B ist leer:

→ Erzeuge einen neuen Knoten, weise ihn B als Wurzel
zu und setze wurzel.wert auf k.

► B ist nicht leer und wurzel.wert = k:
→ Nichts zu tun, da keine doppelten Einträge

vorgenommen werden sollen.
► B ist nicht leer und wurzel.wert < k:

→ Füge k in den rechten Unterbaum von B ein.
► B ist nicht leer und wurzel.wert > k:

→ Füge k in den linken Unterbaum von B ein.

19

Binäre Suchbäume

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Wiederholung
• Bäume Dr. Lars Hildebrand – EINI LogWing / WiMa

01 public class BinarySearchTree {

02 private Knoten wurzel;

03

04 public BinarySearchTree() {

05 wurzel = null;

06 }

07

08 public void FuegeEin(int i) {

09 wurzel = FuegeEin(wurzel, i);

10 }

20

Die Klasse BinarySearchTree (BST) I

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Wiederholung
• Bäume Dr. Lars Hildebrand – EINI LogWing / WiMa

21

Die Klasse BinarySearchTree (BST) II

Einfügen in den Baum

01 private Knoten FuegeEin(Knoten einKnoten, int wert) {
02 if (einKnoten == null) // Wurzel ist leer

03 einKnoten = new Knoten(wert);

04 else {

05 if (wert < einKnoten.HoleWert()) // links weiter

06 einKnoten.SetzeLinks

07 (FuegeEin(einKnoten.HoleLinks(), wert));

08 if (wert > einKnoten.GibWert()) // rechts weiter

09 einKnoten.SetzeRechts

10 (FuegeEin(einKnoten.HoleRechts(), wert));

11 }

12 return einKnoten;

13 }

14 }

Dr. Lars Hildebrand – EINI LogWing / WiMa

Algorithmus für die Suche von Knoten

► Der am Beginn dieses Kapitels skizzierte Algorithmus für das
binäre Suchen lässt sich nun mit der durch die Methode
FuegeEin aufgebauten Datenstruktur recht einfach
realisieren.

Gegeben sind ein binärer Suchbaum B und eine Zahl k,
die in dem Baum B gesucht werden soll:

► B ist leer: k kann nicht im Baum sein.
► B ist nicht leer, so betrachtet man die Fälle:

• wurzel.wert = k: k ist gefunden, d.h. bereits in dem
Baum B vorhanden.

• wurzel.wert < k: Suche im rechten Unterbaum von B.
• wurzel.wert > k: Suche im linken Unterbaum von B.

22

Binäre Suchbäume

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Wiederholung
• Bäume Dr. Lars Hildebrand – EINI LogWing / WiMa

23

BinarySearchTree – Suchen
01 public class BinarySearchTree {
02 ...
03 public boolean Suche(int i) {
04 return Suche(wurzel, i);
05 }
06 private boolean Suche(Knoten einKnoten, int i) {
07 boolean gefunden = false;
08 if (einKnoten != null) {
09 if (einKnoten.HoleWert() == i)
10 gefunden = true;
11 if (einKnoten.HoleWert() < i)
12 gefunden = Suche(einKnoten.HoleRechts(), i);
13 if (einKnoten.HoleWert() > i)
14 gefunden = Suche(einKnoten.HoleLinks(), i);
15 }

16 return gefunden;
17 }
18 }

Dr. Lars Hildebrand – EINI LogWing / WiMa

24

Suchen in binären Suchbäumen I

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Wiederholung
• Bäume

Definition
► Ist B ein binärer Baum, so definiert man die Höhe h(B) von B

rekursiv durch:

h(B):={

► Ist B ein binärer Suchbaum mit h(B)=n, so enthält B
mindestens n und höchstens 2n-1 Knoten:
► n, wenn der Baum zur Liste degeneriert ist,
► 2n-1, wenn jeder von 2n-1-1 inneren Knoten genau zwei

Söhne und jedes von 2n-1 Blättern keine Söhne hat.

0, falls B leer ist
1 + max {h(B1), h(B2)}, falls B1 und B2 linker bzw.

rechter Unterbaum von B sind

Dr. Lars Hildebrand – EINI LogWing / WiMa

Daraus ergibt sich
► Bei einer erfolglosen Suche in einem binären Suchbaum mit

n Elementen sind mindestens log n (Basis 2) und höchstens
n Vergleiche notwendig.

► Der günstige Fall (log n Vergleiche) gilt in einem
gleichgewichtigen Baum. Der ungünstige (n Vergleiche) gilt
in einem vollständig degenerierten Baum, der
beispielsweise immer dann entsteht, wenn die Elemente in
sortierter Reihenfolge eintreffen.

► Um diese Unsicherheit auszuräumen (und somit eine
Laufzeit auf der Basis von log n Vergleichen sicherzustellen),
werden balancierte binäre Suchbäume benutzt.

25

Suche in binären Suchbäumen II

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Wiederholung
• Bäume Dr. Lars Hildebrand – EINI LogWing / WiMa

► Eine Art balancierter, binärer Suchbäume sind die AVL-
Bäume (nach ihren Erfindern Adelson, Velskii, Landis).

► Def.: Ein AVL-Baum ist ein binärer Suchbaum, in dem sich
für jeden Knoten die Höhen seiner zwei Teilbäume um
höchstens 1 unterscheiden.

► Einfüge- und Entferne-Operationen werden zwar etwas
aufwendiger, aber dafür ist die Suche auch in ungünstigen
Fällen effizienter (vgl. weiterführende Literatur).

26

Suche in binären Suchbäumen III

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Wiederholung
• Bäume Dr. Lars Hildebrand – EINI LogWing / WiMa

Algorithmus für das Entfernen

► Entfernen der Wurzel führt zur Konstruktion eines neuen
binären Suchbaums.

► Darum: Finden eines Knotens, der an die Stelle der Wurzel
gesetzt wird und die Kriterien für einen neuen binären
Suchbaum erfüllt

► Der Knoten muss größer als die Wurzel des linken
Unterbaumes sein und kleiner als die Wurzel des rechten
Unterbaumes.

27

Entfernen der Wurzel aus einem binären Suchbaum

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Wiederholung
• Bäume Dr. Lars Hildebrand – EINI LogWing / WiMa

28

Entfernen der Wurzel – Beispiel

16

10

9 14

13 15

18

24

Kandidaten

15

10

9 14

13

18

24

Situation vor dem
Löschen

Situation nach dem
Löschen

Dr. Lars Hildebrand – EINI LogWing / WiMa

Algorithmus für das Entfernen
► Der Knoten mit der größten Beschriftung im linken

Unterbaum wird genommen.
► Dieser Knoten wird entfernt und als Wurzel eingesetzt.
► Ist der linke Unterbaum einer Wurzel leer, nimmt man

analog zur vorgestellten Methode das kleinste Element der
rechten Wurzel.

► Ist der Unterbaum einer Wurzel leer, kann auch auf eine
Umgestaltung des Baumes verzichtet werden: Wird die
Wurzel entfernt, bildet der verbleibende Unterbaum wieder
einen binären Baum.

 Wird ein innerer Knoten aus einem binären Suchbaum
entfernt, stellt dieser Knoten die Wurzel eines Unterbaumes
dar. Diese Wurzel wird dann entfernt.

29

Entfernen der Wurzel aus einem binären Suchbaum

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Wiederholung
• Bäume Dr. Lars Hildebrand – EINI LogWing / WiMa

► Tiefendurchlauf: Hierbei wird von einem Knoten aus in die
Tiefe gegangen, indem einer der Söhne besucht wird und
dann dessen Söhne usw. Erst wenn man die Blätter erreicht
hat, beginnt der Wiederaufstieg.
► Preorder-Durchlauf
► Inorder-Durchlauf
► Postorder-Durchlauf

► Breitendurchlauf: Mit dem Besuch eines Knotens werden
auch seine Nachbarn besucht.
„Schichtweises Abtragen“

30

Durchlaufstrategien für binäre Suchbäume

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Wiederholung
• Bäume Dr. Lars Hildebrand – EINI LogWing / WiMa

31

Tiefendurchlauf / Preorder

16

10

9 14

13 15

18

24

Reihenfolge der besuchten Knoten: 16, 10, 9, 14, 13, 15, 24, 18

01 void PreOrder() {

02 PreOrder(wurzel);

03 }
04 private void PreOrder(Knoten aktuell) {

05 if (aktuell != null) {

06 System.out.println(aktuell.GibWert());

07 PreOrder(aktuell.GibLinks());

08 PreOrder(aktuell.GibRechts());

09 }

10 }

Dr. Lars Hildebrand – EINI LogWing / WiMa

32

Tiefendurchlauf / Inorder

16

10

9 14

13 15

18

24

Reihenfolge der besuchten Knoten: 9, 10, 13, 14, 15, 16, 18, 24

01 void InOrder() {

02 InOrder(wurzel);

03 }

04 private void InOrder(Knoten aktuell) {

05 if (aktuell != null) {

06 InOrder(aktuell.GibLinks());

07 System.out.println(aktuell.GibWert());

08 InOrder(aktuell.GibRechts());

09 }

10 }

Dr. Lars Hildebrand – EINI LogWing / WiMa

33

Tiefendurchlauf / Postorder

16

10

9 14

13 15

18

24

Reihenfolge der besuchten Knoten: 9, 13, 15, 14, 10, 18, 24, 16

01 void PostOrder() {

02 PostOrder(wurzel);

03 }
04 private void PostOrder(Knoten aktuell) {

05 if (aktuell != null) {

06 PostOrder(aktuell.GibLinks());

07 PostOrder(aktuell.GibRechts());

08 System.out.println(aktuell.GibWert());

09 }

10 }

Dr. Lars Hildebrand – EINI LogWing / WiMa

34

Anmerkungen zu den Tiefendurchläufen I

Dr. Lars Hildebrand – EINI LogWing / WiMa

16

10

9 14

13 15

18

24

35

Anmerkungen zu den Tiefendurchläufen II

Dr. Lars Hildebrand – EINI LogWing / WiMa

16

10

9 14

13 15

18

24

Preorder

36

Anmerkungen zu den Tiefendurchläufen III

Dr. Lars Hildebrand – EINI LogWing / WiMa

16

10

9 14

13 15

18

24

Inorder

37

Anmerkungen zu den Tiefendurchläufen IV

Dr. Lars Hildebrand – EINI LogWing / WiMa

16

10

9 14

13 15

18

24

Postorder

38

Breitendurchlauf I

16

10

9 14

13 15

18

24

Reihenfolge der besuchten Knoten: 16, 10, 24, 9, 14, 18, 13, 15

Dr. Lars Hildebrand – EINI LogWing / WiMa

Idee zur Realisierung des Breitendurchlaufs:
► Noch nicht besuchte Knoten in verketteter Liste

zwischenspeichern.
► Nächster Knoten steht am Listenanfang.
► Knoten wird besucht:

► Knoten aus der Liste entfernen
► linken und rechten Sohn (falls vorhanden), in dieser

Reihenfolge ans Ende der Liste anfügen.
► Dies geschieht solange, bis die Liste leer ist.
► Die Liste wird mit der Wurzel des Baumes initialisiert.

► Liste beschreibt eine Warteschlange für Knoten
► Der Knoten am Anfang der Warteschlange wird als nächster

ausgedruckt.
► Der Knoten am Ende der Warteschlange ist als letzter

hinzugefügt worden.

39

Breitendurchlauf II

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Wiederholung
• Bäume Dr. Lars Hildebrand – EINI LogWing / WiMa

► Listen: ungünstig bzgl. Suchaufwand O(N)
► Binäre Suchbäume:

► gerichtete, azyklische Graphen mit max. 2 Nachfolgern je
Knoten und max. 1 Vorgänger je Knoten

► Höhe des Baumes = max. Länge einer Suche
• degenerierter Baum: Suche in O(N)
• balancierter Baum: Suche in O(log2(N))

► Viele Varianten von Bäumen, um Suchaufwand und Aufwand
für Einfüge- und Entferne-Operationen gering zu halten:

• AVL Bäume,
► Operationen auf Bäumen:

• Einfügen
• Löschen
• Suchen
• Traversieren: Inorder/Preorder/Postorder,

Breitendurchlauf

40

Zusammenfassung

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Wiederholung
• Bäume Dr. Lars Hildebrand – EINI LogWing / WiMa

Artikel im EINI-Wiki:

→ Baum

Dr. Lars Hildebrand – EINI LogWing / WiMa 41

Bäume

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Grundlagen
• Bäume

Begriffe

Spezifikationen, Algorithmen, formale Sprachen
Programmiersprachenkonzepte
Grundlagen der imperativen Programmierung

Algorithmen und Datenstrukturen
Felder
Sortieren
Rekursive Datenstrukturen (Baum, binärer Baum, Heap)
Heapsort

 Objektorientierung
Einführung
Vererbung
Anwendung

42

Übersicht

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Grundlagen
• Bäume Dr. Lars Hildebrand – EINI LogWing / WiMa

Dr. Lars Hildebrand – EINI LogWing / WiMa 43

Übersicht

Vielen Dank für Ihre Aufmerksamkeit

Nächste Termine

► Fragestunde – WiMa 5.2.2026, 08:15
► Fragestunde – LogWing 6.2.2026, 08:15

