EINI
LogWing/WiMa/MP

EinfUhrung in die Informatik fur
Naturwissenschaftler und Ingenieure

Vorlesung 2 SWS WS 25/26

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

Wiederholung
Baume

Thema

Kapitel 8
Dynamische Datenstrukturen

v/ Listen

» Baume

Unterlagen

> Diflmann, Stefan und Ernst-Erich Doberkat: Einfiihrung in die
objektorientierte Programmierung mit Java, 2. Auflage.
Minchen [u.a.]: Oldenbourg, 2002.
(= ZB oder Volltext aus Uninetz)

> Echtle, Klaus und Michael Goedicke: Lehrbuch der
Programmierung mit Java. Heidelberg: dpunkt-Verl, 2000.
ZB)

(=

Wiederholung

Lineare Liste als klassische, einfache dynamische Datenstruktur

> Grundkonstruktion: Objekte haben Referenz auf Objekt der eigenen
Klasse

= Typische Operationen: Anlegen, Finden von Elementen, Einfligen von
Elementen, Durchlaufen aller Elemente, Loschen eines Elementes

EINI LogWing /
WiMa = Unterschiedliche Varianten
= einfache Liste, Liste mit Kopf- & FuR-Attribut, doppelt verkettete
Kapitel 8 Liste
Dynamische i . _ . .
Datenstrukturen > Operationen lassen sich auch leicht rekursiv formulieren.

= Aufwand fir Operationen (worst case)
= Einfigen am Anfang: O(1)
= Einfigen am Ende: ohne FuR-Attribut O(N), mit FuB-Attribut O(1)
= Suchen eines Elementes

* in unsortierter Liste: O(N)

 in sortierter Liste: O(N), aber Abbruch vor Listenende

In diesem Kapitel: (auller bei fehlendem Element)

* Prolog = Einfligen eines Elementes in eine sortierte Liste: O(N)

e Baume

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

Prolog
Wiederholung

Allgemeines zu Baumen |

» Baume sind...

= gerichtete, azyklische Graphen. Es gibt keine Zyklen
zwischen Mengen von Knoten.

= hierarchische Strukturen. Man kommt von einer Wurzel
zU inneren Knoten und letztlich zu Blattern.

= verkettete Strukturen, die dynamisch wachsen und
schrumpfen kénnen.

> Binare Baume sind Baume, in denen jeder Knoten maximal
zwei Sohne hat.

= Beispiele fur die Anwendung binarer Baume:
- Heapsort
= binare Suchbaume

Allgemeines zu Baumen I

Wurzel

EINI LogWing /
WiMa

innerer <::
Kapitel 8 Knoten D

Blatt

Dynamische
Datenstrukturen

(—

In diesem Kapitel:
Prolog

Wiederholung
Dr. Lars Hildebrand — EINI LogWing / WiMa 5

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

* Prolog
 Wiederholung

Allgemeines zu Baumen lli

> Typische Zugriffsmethoden

|

[

|

Einflgen einer Wurzel

Einflgen eines inneren Knotens
Entfernen der Wurzel

Entfernen eines inneren Knotens
Suchen

Nach links/rechts navigieren

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

Prolog
Wiederholung

Bindare Suchbaume

= Aufgabe
Suche ein Element x in einer geordneten Menge.

= Grundidee: rekursiver Ansatz
= Beschaffe mittleres Element y der geordneten Menge
= falls x = y: fertig

= falls x < y: wende Verfahren rekursiv auf Teilmenge
kleinerer Elemente an

= falls x > y: wende Verfahren rekursiv auf Teilmenge
grolSerer Elemente an

> Beobachtung

= |n jedem Schritt wird die zu betrachtende Menge
halbiert.

~ —> bei N Elementen also log,(N) Schritte

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

* Prolog
 Wiederholung

Suche ,,in einer Halfte

> Grobe Idee (erfolgreiche Suche)

llI

~ Suchen in ,geordneter Liste” durch Uberpriifen des
,mittleren” Elementes + Fortsetzung in einer Halfte

- Beispiel
Position 1 2
Wert 2 4

17

19

36

40

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

Prolog
Wiederholung

Suche ,,in einer Halfte” Il

> Grobe Idee (erfolgreiche Suche)

~ Suchen in ,geordneter Liste” durch Uberpriifen des
,mittleren” Elementes + Fortsetzung in einer Halfte

- Beispiel @

Position| 1 2 3 4 5
Wert 2 4 6 7 8

> Suche nach 19
= Mitte: 5. Pos., Wert =8
- 19>8
= rechten Abschnitt wahlen

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

Prolog
Wiederholung

Suche ,,in einer Halfte” lll

> Grobe Idee (erfolgreiche Suche)

~ Suchen in ,geordneter Liste” durch Uberpriifen des
,mittleren” Elementes + Fortsetzung in einer Halfte

- Beispiel
Position 1 2 3 4 5
Wert 2 4 6 7 8

> Suche nach 19
= Mitte: 7. Pos., Wert = 19

= 19 gefunden, fertig

4

17

7
19

8
36

40

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

Prolog
Wiederholung

Suche ,,in einer Halfte” IV

> Grobe Idee (erfolgreiche Suche)

~ Suchen in ,geordneter Liste” durch Uberpriifen des
,mittleren” Elementes + Fortsetzung in einer Halfte

- Beispiel @

Position | 1 2 3 4 5
Wert 2 4 6 7 8

> Suche nach 5
= Mitte: 5. Pos., Wert=8
- 5<8
= linken Abschnitt wahlen

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

Prolog
Wiederholung

Suche ,,in einer Halfte” V

> Grobe Idee (erfolgreiche Suche)

~ Suchen in ,geordneter Liste” durch Uberpriifen des
,mittleren” Elementes + Fortsetzung in einer Halfte

- Beispiel
Position | 1 2 3 4 5
Wert 2 4 6 7 8

> Suche nach 5
= Mitte: 2. Pos., Wert =4
- 5>4
= rechten Abschnitt wahlen

17

19

36

40

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

Prolog
Wiederholung

Suche ,,in einer Halfte"” VI

> Grobe Idee (erfolgreiche Suche)

~ Suchen in ,geordneter Liste” durch Uberpriifen des
,mittleren” Elementes + Fortsetzung in einer Halfte

- Beispiel @

Position 1 2 3 4 5 6
Wert 2 4 6 7 8 17

> Suche nach 5
= Mitte: 3. Pos., Wert=6
- 5<6
= keine weitere Halfte vorhanden
= 5 nicht gefunden, fertig

19

36

40

Suche ,,in einer Halfte”

= Aufgabe: Trage die Zahlen 17, 4, 36, 2, 8, 19, 40, 6, 7 in eine baumformige
Struktur so ein,

— dass die Suche ,,in einer Halfte” effektiv unterstitzt wird:

/\
2/\ /\

8
/ ‘ Warum hier?

6 « ‘ Antwort spater!

Binare Suchbaume |

Definition
> Sei B ein bindarer Baum, dessen Knoten mit ganzen Zahlen beschriftet sind.
B heilRt binarer Suchbaum, falls gilt:

» Bist leer oder
» der linke und der rechte Unterbaum von B
sind binare Suchbaume,
» Ist w die Beschriftung der Wurzel, so sind

alle Elemente im linken Unterbaum kleiner
als w, alle Elemente im rechten Unterbaum

groBer als w.

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

Prolog
Wiederholung

Binare Suchbaume Il

= Der Aufbau eines binaren Suchbaums erfolgt durch
wiederholtes Einfligen in einen (anfangs) leeren Baum.

> Die Reihenfolge der Werte, die in einen binaren Suchbaum
eingefligt werden, bestimmt die Gestalt des Baumes.

> Eine Menge von Werten kann bei unterschiedlichen
Eingabereihenfolgen zu verschiedenen Reprasentationen
als Baum fuhren.

Binare Suchbaume — Beispiele

Eingabefolge 1 2 3

Eingabefolge 3 2 1

Eingabefolge 3 1 2 Eingabefolge 2 1 3 oder 2 3 1

Binare Suchbaume — Die Klasse Knoten

01 class Knoten {

02
03
04
05
06
07
08
09
10
11
12
13
14

};

private int wert;

private Knoten links, rechts;

public Knoten (int i) {

wert = 1; links = rechts = null; }

public void SetzeWert(int i) { wert = 1i; }
int HoleWert() { return wert; }

void Setzelinks (Knoten k) { links =

public
public k;
Knoten Holeliinks () { return links; }

void SetzeRechts (Knoten k) { rechts =

public
public

public Knoten HoleRechts () { return rechts; }

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

Prolog
Wiederholung

Bindare Suchbaume

Algorithmus fur das Einfligen von Knoten

= Gegeben seien ein binarer Suchbaum B und eine ganze Zahl
k, die in B eingefligt werden soll. Es konnen vier Falle
auftreten:

- B ist leer:

— Erzeuge einen neuen Knoten, weise ihn B als Wurzel
zu und setze wurzel.wert auf k.

= B ist nicht leer und wurzel.wert = k:

— Nichts zu tun, da keine doppelten Eintrage
vorgenommen werden sollen.

= B ist nicht leer und wurzel.wert < k:

— Fuge k in den rechten Unterbaum von B ein.
= B ist nicht leer und wurzel.wert > k:

— Fuge k in den linken Unterbaum von B ein.

Die Klasse BinarySearchTree (BST)I

01 public class BinarySearchTree {

02 private Knoten wurzel;
03
EINI LogWing / 04 public BinarySearchTree () {
WiMa 05 wurzel = null;
Kapitel 8 06 }
Dynamische 07
Datenstrukturen

08 public void FuegeEin(int 1) {
09 wurzel = FuegeEin (wurzel, 1i);

10 }

In diesem Kapitel:
Prolog
Wiederholung

Die Klasse BinarySearchTree (BST)II

Einfligen in den Baum

01
02

03
04
05
06
07
08
09
10
11
12

13
14

}

private Knoten FuegeEin (Knoten einKnoten, int wert) {

if (einKnoten == null) // Wurzel ist leer
einKnoten = new Knoten (wert) ;
else {
if (wert < einKnoten.HoleWert()) // links weiter
einKnoten.Setzelinks
(FuegeEin (einKnoten.HoleLinks () , wert));
if (wert > einKnoten.GibWert ()) // rechts weiter
einKnoten.SetzeRechts
(FuegeEin (einKnoten.HoleRechts () , wert));

}

return einKnoten;

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

Prolog
Wiederholung

Bindare Suchbaume

Algorithmus fiir die Suche von Knoten

> Der am Beginn dieses Kapitels skizzierte Algorithmus flr das
binare Suchen lasst sich nun mit der durch die Methode
FuegeEin aufgebauten Datenstruktur recht einfach

realisieren.

Gegeben sind ein binarer Suchbaum B und eine Zahl k,
die in dem Baum B gesucht werden soll:

= B ist leer: k kann nicht im Baum sein.

= B ist nicht leer, so betrachtet man die Falle:

* wurzel.wert = k: k ist gefunden, d.h. bereits in dem
Baum B vorhanden.

 wurzel.wert < k: Suche im rechten Unterbaum von B.
 wurzel.wert > k: Suche im linken Unterbaum von B.

BinarySearchTree — Suchen

01 public class BinarySearchTree ({

02
03
04
05
06

07
08
09
10
11
12
13
14
15

16

17
18

}

public boolean Suche(int i) {
return Suche (wurzel, i);

}

private boolean Suche (Knoten einKnoten, int 1i) {

boolean gefunden = false;
if (einKnoten '= null) {
i1f (einKnoten.HoleWert() == 1)
gefunden = true;

if (einKnoten.HoleWert() < 1i)

gefunden =

Suche (einKnoten.HoleRechts (),

if (einKnoten.HoleWert() > 1i)

gefunden =

}

return gefunden;

Suche (einKnoten.HoleLinks (),

i);

i);

Suchen in binaren Suchbaumen |
Definition

> |st B ein bindarer Baum, so definiert man die H6he h(B) von B
rekursiv durch:

EINI LogWing / h(B)={ 0, falls B leer ist |

WiMa 1+ max{h(B1), h(B2)}, falls B1 und B2 linker bzw.
rechter Unterbaum von B sind

Kapitel 8

Dynamische

Datenstrukturen

> |st B ein binarer Suchbaum mit h(B)=n, so enthalt B
mindestens n und hochstens 2"-1 Knoten:

= n, wenn der Baum zur Liste degeneriert ist,

= 27-1, wenn jeder von 2™-1 inneren Knoten genau zwei
S6hne und jedes von 2" Blattern keine S6hne hat.

In diesem Kapitel:
Prolog
Wiederholung

Suche in binaren Suchbaumen I

Daraus ergibt sich

> Bei einer erfolglosen Suche in einem binaren Suchbaum mit
n Elementen sind mindestens log n (Basis 2) und hochstens

n Vergleiche notwendig.

EINI LogWing /
WiMa

= Der giinstige Fall (log n Vergleiche) gilt in einem
Kapitel 8 gleichgewichtigen Baum. Der ungiinstige (n Vergleiche) gilt
DIEL e in einem vollstandig d ierten B d
Datenstrukturen g degenerierten baum, aer
beispielsweise immer dann entsteht, wenn die Elemente in
sortierter Reihenfolge eintreffen.

> Um diese Unsicherheit auszuraumen (und somit eine
Laufzeit auf der Basis von log n Vergleichen sicherzustellen),
werden balancierte binare Suchbaume benutzt.
In diesem Kapitel:

Prolog
Wiederholung

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

Prolog
Wiederholung

Suche in binaren Suchbaumen Il

> Eine Art balancierter, binarer Suchbaume sind die AVL-
Baume (nach ihren Erfindern Adelson, Velskii, Landis).

> Def.: Ein AVL-Baum ist ein binarer Suchbaum, in dem sich
fur jeden Knoten die Hohen seiner zwei Teilbaume um
hochstens 1 unterscheiden.

= Einflge- und Entferne-Operationen werden zwar etwas
aufwendiger, aber dafir ist die Suche auch in unginstigen
Fallen effizienter (vgl. weiterfihrende Literatur).

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

Prolog
Wiederholung

Entfernen der Wurzel aus einem binaren Suchbaum

Algorithmus fir das Entfernen

> Entfernen der Wurzel fuhrt zur Konstruktion eines neuen
binaren Suchbaums.

> Darum: Finden eines Knotens, der an die Stelle der Wurzel
gesetzt wird und die Kriterien flr einen neuen binaren
Suchbaum erfullt

> Der Knoten muss grolder als die Wurzel des linken
Unterbaumes sein und kleiner als die Wurzel des rechten
Unterbaumes.

Entfernen der Wurzel — Beispiel

Situation vor dem Situation nach dem
Loschen Loschen

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

Prolog
Wiederholung

Entfernen der Wurzel aus einem binaren Suchbaum

Algorithmus fir das Entfernen

[

Y

.0

)

Der Knoten mit der grofBten Beschriftung im linken
Unterbaum wird genommen.

Dieser Knoten wird entfernt und als Wurzel eingesetzt.

Ist der linke Unterbaum einer Wurzel leer, nimmt man
analog zur vorgestellten Methode das kleinste Element der
rechten Wurzel.

Ist der Unterbaum einer Wurzel leer, kann auch auf eine
Umgestaltung des Baumes verzichtet werden: Wird die
Wurzel entfernt, bildet der verbleibende Unterbaum wieder
einen binaren Baum.

Wird ein innerer Knoten aus einem binaren Suchbaum
entfernt, stellt dieser Knoten die Wurzel eines Unterbaumes
dar. Diese Wurzel wird dann entfernt.

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

Prolog
Wiederholung

Durchlaufstrategien fur binare Suchbaume

> Tiefendurchlauf: Hierbei wird von einem Knoten aus in die
Tiefe gegangen, indem einer der S6hne besucht wird und
dann dessen S6hne usw. Erst wenn man die Blatter erreicht
hat, beginnt der Wiederaufstieg.

= Preorder-Durchlauf
= Inorder-Durchlauf
= Postorder-Durchlauf

> Breitendurchlauf: Mit dem Besuch eines Knotens werden
auch seine Nachbarn besucht.
,Schichtweises Abtragen”

Tiefendurchlauf / Preorder

01l void PreOrder () {

02 PreOrder (wurzel) ;

03 }

04 private void PreOrder (Knoten aktuell) {
05 if (aktuell !'= null) {

06 System.out.println (aktuell.GibWert()) ;
07 PreOrder (aktuell .GibLinks ()) ;

08 PreOrder (aktuell.GibRechts ()) ;

09 }

10 }

Reihenfolge der besuchten Knoten: 16, 10, 9, 14, 13, 15, 24, 18

01
02
03

04
05
06
07
08
09
10

Tiefendurchlauf / Inorder
void InOrder () {

InOrder (wurzel) ;

}

private void InOrder (Knoten aktuell) {

if (aktuell !'= null) {
InOrder (aktuell.GibLinks ()) ;
System.out.println (aktuell.GibWert()) ;
InOrder (aktuell .GibRechts ()) ;

Reihenfolge der besuchten Knoten: 9, 10, 13, 14, 15, 16, 18, 24

01
02
03
04
05
06
07
08
09
10

Tiefendurchlauf / Postorder

void PostOrder () {
PostOrder (wurzel) ;

}
private void PostOrder (Knoten aktuell) {

if (aktuell '= null) {
PostOrder (aktuell . .GibLinks ()) ;
PostOrder (aktuell.GibRechts ()) ;
System.out.println (aktuell.GibWert()) ;

}

Reihenfolge der besuchten Knoten: 9, 13, 15, 14, 10, 18, 24, 16

Anmerkungen zu den Tiefendurchlaufen |

Anmerkungen zu den Tiefendurchlaufen lII

Preorder —O

Anmerkungen zu den Tiefendurchlaufen Ill

Inorder Q

Anmerkungen zu den Tiefendurchlaufen IV

Postorder O—

Breitendurchlauf |

*

A
A Y,
N — —
A.A
__/ __/

Reihenfolge der besuchten Knoten: 16, 10, 24, 9, 14, 18, 13, 15

technische universitat Dr. Lars Hildebrand — EINI LogWing / WiMa

dortmund

38

Breitendurchlauf Ii

Idee zur Realisierung des Breitendurchlaufs:

> Noch nicht besuchte Knoten in verketteter Liste
zwischenspeichern.

> Nachster Knoten steht am Listenanfang.

EINI LogWing / > Knoten wird besucht:
WiMa .

= Knoten aus der Liste entfernen
Kapitel 8 = linken und rechten Sohn (falls vorhanden), in dieser
Dynamische Reihenfolge ans Ende der Liste anflgen.
Datenstrukturen

= Dies geschieht solange, bis die Liste leer ist.
> Die Liste wird mit der Wurzel des Baumes initialisiert.

= Liste beschreibt eine Warteschlange fir Knoten

= Der Knoten am Anfang der Warteschlange wird als nachster
ausgedruckt.

= Der Knoten am Ende der Warteschlange ist als letzter

In diesem Kapitel: hinzugefugt worden.

* Prolog
 Wiederholung

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

Prolog
Wiederholung

Zusammenfassung

= Listen: ungunstig bzgl. Suchaufwand O(N)
> Binare Suchbaume:

= gerichtete, azyklische Graphen mit max. 2 Nachfolgern je
Knoten und max. 1 Vorganger je Knoten

= Hohe des Baumes = max. Lange einer Suche
* degenerierter Baum: Suche in O(N)
* balancierter Baum: Suche in O(log,(N))

= Viele Varianten von Baumen, um Suchaufwand und Aufwand
fur Einfliige- und Entferne-Operationen gering zu halten:

* AVL Baume,
= Operationen auf Baumen:
* Einfugen
e Loschen
e Suchen

* Traversieren: Inorder/Preorder/Postorder,
Breitendurchlauf

" * Baume

EIN|

L/

Artikel im EINI-Wiki:

> Baum

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:
* Prolog
* Grundlagen

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

* Prolog
* Grundlagen

Ubersicht
Begriffe

v Spezifikationen, Algorithmen, formale Sprachen
\/Programmiersprachenkonzepte
v Grundlagen der imperativen Programmierung

v Algorithmen und Datenstrukturen
v Felder
v Sortieren
v Rekursive Datenstrukturen (Baum, bindrer Baum, Heap)
v Heapsort

v Objektorientierung
v Einfihrung
v Vererbung
v Anwendung

Dr. Lars Hildebrand — EINI LogWing / WiMa

42

Ubersicht

Vielen Dank fiir lhre Aufmerksamkeit

Nachste Termine

> Fragestunde — WiMa 5.2.2026, 08:15
> Fragestunde — LogWing 6.2.2026, 08:15

