EINI
LogWing/WiMa/MP

EinfUhrung in die Informatik fir
Naturwissenschaftler und Ingenieure

Vorlesung 2SWS WS 25/26

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

* Grundlagen
* Listen

Thema

Kapitel 8
Dynamische Datenstrukturen

» Listen
= Baume

Unterlagen

> DiBmann, Stefan und Ernst-Erich Doberkat: Einftihrung in die
objektorientierte Programmierung mit Java, 2. Auflage.
Minchen [u.a.]: Oldenbourg, 2002.
(= ZB oder Volltext aus Uninetz)

> Echtle, Klaus und Michael Goedicke: Lehrbuch der
Programmierung mit Java. Heidelberg: dpunkt-Verl, 2000.
(= ZB)

Ubersicht

Begriffe

v Spezifikationen, Algorithmen, formale Sprachen
\/Programmiersprachenkonzepte

EINI LogWi : . .

WM ing / v Grundlagen der imperativen Programmierung
Kapitel 8 v Algorithmen und Datenstrukturen

Dynamische

Datenstrukturen /' Felder

v Sortieren
v Rekursive Datenstrukturen (Baum, binarer Baum, Heap)
v Heapsort

» Objektorientierung
v EinfUhrung
v Vererbung
> Anwendung

In diesem Kapitel:

* Grundlagen
* Listen

Grundlagen dynamischer Datenstrukturen |

= Dynamische Datenstrukturen

= Strukturen, die je nach Bedarf und damit dynamisch
wachsen und schrumpfen kénnen.

- |
EINI LogWing / # Felder/Arrays!

WiMa

Kapitel 8
Dynamische > @Grundidee

Datenstrukturen . . .
= Dynamische Datenstrukturen bilden Mengen mit

typischen Operationen ab.

- Einzelne Elemente speichern die zu speichernden/
verarbeitenden Daten.

= Einzelne Elemente werden durch dynamische

Datenstrukturen verknupft.
In diesem Kapitel: = — Trennung von Datenstrukturierung & Nutzdaten
* Prolog

e Listen

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

* Prolog

e Listen

Grundlagen dynamischer Datenstrukturen Il

> Art der Elemente ist problemabhangig, variiert daher je
nach Anwendung.

> Fur die Verknupfung existieren typische Muster:
= Listen,
= Baume,
= Graphen,

- see

> QObjektorientierte Sicht

Dynamische Datenstrukturen sind durch die Art der
Verkniipfung der Elemente und die Zugriffsmethoden
charakterisiert.

Grundlagen dynamischer Datenstrukturen Ili

Wichtige dynamische Datenstrukturen:

> Listen
EINI LogWing / = |ineare Listen
WiMa = doppelt verkettete Listen
Kapitel 8 = Baume
Dynamische = binare Baume
Datenstrukturen

= binare Suchbdaume
> Graphen
= gerichtete Graphen
= ungerichtete Graphen
Stack
= Schlangen

\

In diesem Kapitel:
* Prolog

e Listen

Grundlagen dynamischer Datenstrukturen IV

Fragen zur Organisation der Datenstrukturen

> Funktionen
, = Wie wird eine Instanz der Struktur initialisiert?
EINI LogWi
WiMaog e = Wie werden Daten
e eingeflgt?

Kapitel 8 e
HE e modifiziert?

Dynamische

Datenstrukturen e entfernt?

> Wie wird in den Strukturen navigiert?

> Wie werden einzelne Werte in einer Struktur
wiedergefunden?

= Wie werden alle in einer Struktur abgelegten Werte

In diesem Kapitel:
P besucht?

* Prolog

e Listen

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

* Prolog

e Listen

Grundlagen dynamischer Datenstrukturen V

= Aufbau von dynamischen Datenstrukturen

~ Klassen enthalten Attribute (hier: werter), die
Referenzen auf Objekte der eigenen Klasse darstellen.

= Diese Attribute schaffen die Moglichkeit, ein weiteres
Objekt der Klasse an eine Referenz zu binden.

= Die einzelnen Objekte sind in der Lage, gemeinsam eine
komplexe Struktur durch aufeinander verweisende
Referenzen zu bilden.

class Element {
Element weilter;

* ®*| Dynamische Datenstrukturen — Grundlagen
EINF
] L

Artikel im EINI-Wiki:

- Dynamische Datenstruktur

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:
* Prolog

e Listen

http://129.217.47.110/index.php/Hauptseite

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

* Prolog
* Grundlagen

Listen

= Listen definieren eine Reihenfolge von Elementen, die
gemald dieser Reihenfolge miteinander verknlpft sind.

= Typische Zugriffsmethoden
= Anfligen eines neuen Elementes

= Einfugen eines neuen Elementes an einer bestimmten
Position in der Liste

= Auslesen eines beliebigen Elementes der Liste
= Entfernen eines beliebigen Elementes der Liste
- Abfrage, ob die Liste leer ist

- Leeren der Liste

> Auch wenn nicht alle Methoden realisiert sind, wird die
Struktur als Liste bezeichnet.

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

* Prolog
* Grundlagen

Bestandteile einer Liste — Element

class Element {
private iInt wert; //Nutzinformation
private Element weiter; //Verwaltungsinformation

public Element(int 1) {
wert = i;
weiter = null;

= Deklaration einer Klasse Element mit zwei privaten
Attributen und einem Konstruktor

= Ein Objekt vom Typ Element enthalt als Attribute eine ganze Zahl
und eine Referenz auf ein weiteres Objekt des Typs Element.

> Jedes Objekt vom Typ Element besitzt eine Referenz auf ein
weiteres Element: Man kann sie miteinander verketten.

Bestandteile einer Liste

> \Woraus besteht eine Liste?
= aus Elementen, die in der Liste gespeichert werden
= aus der Liste selbst, die existiert, auch wenn kein

Element gespeichert ist Klasse Liste
EINI LogWing / /
WiMa
. _ Attribut kopf vom T
public class Liste { ., — el
Kapitel 8 =
Dynamische private Element kopf;
Datenstrukturen
public Liste() { N Konstruktor,
arameterlos
kopf = null; P
+
public Liste(int w) { i Konstruktor,
kopf = new Element(w); L AP
In diesem Kapitel: }
* Prolog

* Grundlagen }

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

* Prolog
* Grundlagen

Konstruktion von Listen

> Eine lineare Liste kann auf verschiedene Arten konstruiert
werden

= Anhangen eines neuen Elementes
e an den Anfang,
* in die Mitte oder
e an das Ende einer bereits bestehenden Liste.

= Zugriff auf die Liste wird durch eine Referenz realisiert,
- die in der Klasse L 1ste realisiert ist und
= die auf das erste Element der Liste zeigt.

= Enthalt eine Liste keine Elemente, zeigt die Referenz auf
null.

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

* Prolog
* Grundlagen

Schema der Klasse LIneare Liste

> Eine leere Liste erzeugen

Liste melneListe =

new Liste();

Liste

meineListe —

kopfe—-

» Eine Liste mit einem Element erzeugen

Liste melneListe =

new Liste(42);

Liste Element
meineListe — -
kopfe —|— we|_rt- 42
welrter @

Funktionalitat einer Liste

Was fehlt noch?

= Typische Zugriffsmethoden

EINI LogWing / = Anfligen eines neuen Elementes

WiMa = Einfligen eines neuen Elementes an einer bestimmten

Kapitel 8 Position in der Liste

Dynamische = Auslesen eines beliebigen Elementes der Liste
Datenstrukturen

= Entfernen eines beliebigen Elementes der Liste
- Abfrage, ob die Liste leer ist

- Leeren der Liste

In diesem Kapitel:
* Prolog
* Grundlagen

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

* Prolog
* Grundlagen

Klasse Element: Volistandige Implementierung |

class Element {

private iInt wert;
private Element weiter;

public Element(int 1) {
wert = 1; weilter = null;
+

public Element(int 1, Element e) {
wert = 1; weiter = e;
+

public void SetzeWert(int 1) {wert = 1;}
public 1nt HoleWert() {return wert;}

public void SetzeWeiter(Element e) {weiter =

public Element HoleWeiter() {return weiter;}

e;}

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

Prolog
Grundlagen

Klasse Element: Vollstandige Implementierung li

Anmerkungen

> Es existiert ein zusatzlicher Konstruktor, der das neue
Element vor ein bestehendes Element einreiht.

> |Implementierung von Get- und Set-Methoden fir den
Zugriff auf die privaten Attribute

- public void SetzeWert(int 1)
- public Int HoleWert()
- public void SetzeWeirter(Element e)

- public Element HoleWelrter()

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

* Prolog
* Grundlagen

An den Anfang der Liste einfligen |

class Liste {

}
¥

public void FuegeEin(int neuerWert) {
kopf = new Element(neuerWert, kopf);

Liste meineListe =

new Liste(42);

meineListe — »

Liste Element
koofe Wer_‘t: 42
b welter @

meineListe.FuegeEIn(73);

Element

meineListe — »

Liste Element
kopfe weft: 42
b welter @

wert: 73

weirter @

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

* Prolog
* Grundlagen

An den Anfang der Liste einfligen Il

Anmerkungen zu FuegeEin()

> Ein neues Element wird erzeugt
- kopf = new Element(neuerWert, kopf);
= neuerWert enthalt die Nutzungsinformation.
-~ kopT enthalt die Referenz auf das alte erste Element.

= Das neue Element referenziert das alte erste Element.

> Das neue Element wird zum neuen Kopf der Liste
- kopf = new Element(neuerWert, kopf);

> Wichtig: Die Referenz auf das alte erste Element darf nicht
verloren gehen!

Ausgeben der Liste |

public class Liste {
public void ZeigeListe() {

Element aktuellesElement = this.kopf;
EINI LogWing / while (aktuellesElement != null) {

WiMa System.out.println(aktuel lesElement.HoleWert());
Kapitel 8 aktuellesElement = aktuellesElement.HoleWeiter();
Dynamische }

Datenstrukturen }

}

Liste meineListe = new Liste(42);
meineListe.FuegeEIn(73);
meineListe.ZeigeListe();

> run TestListe

* Prolog 73
* Grundlagen 42

In diesem Kapitel:

Ausgeben der Liste Il

Anmerkungen zu Zeigeliste()

> Anzahl der Elemente variabel, daher Programmierung einer
Schleife notwendig

= Start ist das Element, auf das KOpT verweist

EINI LogWing /
WiM -
o Element aktuellesElement = this.kopfT;
Kapitel 8
Dynamische = |st kein Element in der Liste gespeichert, verweist KopT auf
Datenstrukturen
null.
> Solange das aktuelle Element '= null gilt
= Der Wert des aktuellen Elementes wird ausgegeben:
System.out.printin(
aktuelleskElement.HoleWert());
= Das aktuelle Element wird auf das nachste gesetzt:
, - aktuellesElement =
In dl':’sTm Kapitel: aktuel lesElement.HoleWeiter();
. rolog

* Grundlagen

An das Ende der Liste anfligen |

public class Liste {

public void FuegeAn(int neuerWert) {
Element aktElement = this.kopf;

EINI LogWing / 1T (aktElement == null)
WiMa FuegeEin(neuerWert);
else {

Kapitel 8 while (aktElement.HoleWeiter() != null) {
Dl aktElement = aktElement.HoleWeiter();
Datenstrukturen

+

aktElement.SetzeWeirter(new Element(neuerWert));

i3ds

Liste meineListe = new Liste(42);
meineListe.FuegeAn(73);

In diesem Kapitel: einel iste Liste Element Element
. - i

* Prolog kopfe Wel_’t- 42 Wer_‘t_ 73

e Grundlagen welter @ » welter @

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

* Prolog
* Grundlagen

An das Ende der Liste anfligen Il

Anmerkungen zu FuegeAn()

> Anzahl der Elemente variabel, daher Programmierung einer
Schleife notwendig

= Start ist das Element, auf das KOpT verweist
Element aktElement = this.kopf;

> |st kein Element in der Liste gespeichert, kann das neue
Element mit FuegeEIn() eingetragen werden.

> Ansonsten muss das Ende der Liste gesucht werden
while (aktElement.HoleWeiter() '= null) {
aktElement = aktElement.HoleWeiter();

}

> Dann kann dort das neue Element mit dem letzten Element
verbunden werden:

aktElement.SetzeWeirter(new Element(neuerWert));

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

Prolog
Grundlagen

Etwas testen...

public class TestListe {
public static void main(String[] args)
Liste meineListe = new Liste(42);
meineListe.FuegeEiIn(73);
meineListe.ZeilgelListe();

meineListe = new Liste();
meineListe.ZeigelListe();
meineListe.FuegeEin(42);
meineListe.FuegeAn(73);

meineListe.ZeigeListe();

}
}

> run TestListe
73
42
42
73

Effizienz der Klasse Li1neare Liste

Aufwand
> Erzeugen einer Liste
= eine Instanziierung
' = FuegeEiIn()
\E,\I,Ii\l,\l,.:ogwmg/ = unabhangig von der Anzahl der gespeicherten Elemente
= ZeingeListe()
II;?/iiatr(::che = abhangig von der Anzahl der gespeicherten Elemente
Datenstrukturen - FuegeAn ()

= Erfordert bei jedem Aufruf ein vollstandiges Durchlaufen
der Liste.

= Eine sehr viel effizientere Realisierung dieser
Listenoperation ware moglich, wenn

* neben dem ersten Element
In diesem Kapitel: e auch das letzte Element der Liste

* Prolog unmittelbar erreichbar ware.
* Grundlagen

Klasse EfFFi1zienteLi1stel

Anderungen an den Attributen & Konstruktoren

> Neues Attribut Fuss, das das letzte Element der Liste
referenziert

» Setzen von FUuss in die Konstruktoren

EINI LogWing /
WiMa _ - _
public class EffizienteListe {
Kapitel 8 _
Dynamische private Element kopfT;
Datenstrukturen private Element fuss;
public EffizienteListe() {
kopft = null;
fuss = null;
+
public EffizienteListe(int w) {
kopf = new Element(w);
In diesem Kapitel: fuss = kopf;
* Prolog }

* Grundlagen

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

* Prolog
* Grundlagen

Klasse Effi1zienteListell

Anderungen an der Methode FuegeAn()
> kein Suchen nach dem Ende der Liste
> Das letzte Element der Liste ist immer in Fuss gespeichert.

= Direkter Zugriff auf das letzte Element ist moglich.

public void FuegeAn(int neuerWert) {
Element neueskElement = new Element(nheuerWert);

iIT (fuss == null) {
kopf = neuesElement;
fuss = neuesElement;

} else {
fuss.SetzeWeirter(neueskElement);
fuss = neuesElement;

}

t

Klasse EfF1zienteLi1ste lll

Anderungen an der Methode ZeigelListe()
> keine

EINI LogWing / public void ZeigeListe() { _
WiMa Element aktuellesElement = this.kopf;
while (aktuellesElement != null) {

Kapitel 8 System.out.printIn(aktuellesElement._HoleWert());
Dynamische _] ’
Datenstrukturen aktuellesElement = aktuellesElement.HoleWeiter();
¥
¥

In diesem Kapitel:
* Prolog
* Grundlagen

Klasse EfFFi1zienteListe IV

Anderungen an der Methode FuegeEin()

> Sonderfall: Nur falls noch kein Element in der Liste ist, muss
die fuss-Referenz bericksichtigt werden!

EINI LogWing /

WiMa

Canitel & public void FuegeEin(int neuerWert) {
apite _)
Dynamische 5opf = new Element(neuerWert, kopfT);
Datenstrukturen iIT (fuss == null)

fuss = kopfT;

In diesem Kapitel:
* Prolog
* Grundlagen

Klasse EfFfFi1zienteListe V

Anderungen an der Klasse Element

> keine
EINI LogWing / Beobachtungen:
WiMa = Alle Anderungen betreffen die Verwaltungsinformationen
Koo der Klasse Liste.
apitel 8

Dynamische > Die Klasse Element bleibt vollig unbeeinflusst.
Datenstrukturen i . i
> Die Methode fuegeAn() hat nun eine konstante Laufzeit.

In diesem Kapitel:
* Prolog
* Grundlagen

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

* Prolog
* Grundlagen

Einfligen in geordnete Liste |

> Problem: Einordnen eines Werts in eine aufsteigend
geordnete Liste

= Keine zwei Elemente haben die identische Belegung des
Attributs wert.

= Der Algorithmus ist auf naturliche Weise rekursiv.

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

* Prolog
* Grundlagen

Einfligen in geordnete Liste Il

> |dee
= Sei x der einzufligende Wert
= 1. Fall: x kleiner als 1. Element => Einfligen am Anfang
= 2. Fall: x groRer als 1. Element:
e Suche passende Position in der Liste
e Trenne Liste in Anfangs- und Endteil auf

e Setze Element an den Anfang des Endteils und
verbinde Teillisten

e Falls x groRer als das letzte Element der Liste, ist x
das neue Ende der Liste.

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

* Prolog
* Grundlagen

Einfligen in geordnete Liste llI

Prazisierung des Algorithmus
Folgende Falle sind zu unterscheiden:

= kopf == null

= Einen Sonderfall bildet die Situation, dass die Liste leer
ist, also noch kein Element enthalt.

= Es muss ein erstes Element angelegt werden, das
sicherlich eine geordnete, einelementige Liste bildet.

= kopf = null:

~ Wir definieren eine private Methode Positioniere,
die als Parameter den einzuordnenden Wert und eine
Referenz auf den Anfang einer Teilliste Ubergeben
bekommt.

- Als Ergebnis gibt Posi1tioniere eine Referenz
auf Element zurick, die auf die Teilliste verweist, in
die x einsortiert ist.

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

* Prolog
* Grundlagen

Einfligen in geordnete Liste IV

= Sei anfang die an Positioniere lbergebene Teilliste
und gelte

- X < anfang.wert:

e Erzeuge ein neues Element und flige es am Anfang
der bei anfang beginnenden Teilliste ein.

- X > anfang.wert:

e Flge x in die mit anfang.weirter beginnende
Restliste ein, indem hierfir Positioniere mit
den entsprechenden Parametern erneut aufgerufen

wird.

Einordnen mit Hilfe von Positioniere

class Liste {
public void OrdneEin(int 1) {
kopf = Positioniere(kopf, 1);
+
EINI LogWi _ o _ _ _
\Nmm:g ing / private Element Positioniere(Element einElement, iInt 1) {
iIT (einElement == null)
Kapitel 8 einElement = new Element(i);
Dynamische
Datenstrukturen else {
IT (1 < einElement_HoleWert()) {
einElement = new Element(i, einElement);
+
iIT (1 > einElement_HoleWert()) {
einElement.SetzeWeiter(
Positioniere(einElement.HoleWeiter(), 1));
+
+
return einkElement;
In diesem Kapitel: +
* Prolog
* Grundlagen

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

* Prolog
* Grundlagen

Durchlaufen einer Struktur

* |n vielen Anwendungen, die auf dynamischen
Datenstrukturen basieren, besteht die Notwendigkeit,
alle Elemente der Struktur genau einmal zu besuchen.

= Dies gilt fur Listen wie flir andere dynamische
Strukturen.

= Dieses moglichst nur einmalige Besuchen aller
Elemente nennt man Durchlaufen einer Struktur.

= Anwendungsbeispiele: Prifen auf Vorhandensein,
Einsortieren, aber auch Ausgabe

Durchlaufen einer Liste |

class Liste {

public void ZeigeListe() {

EINI LogWing / Element aktElement = this.kopf;

WiMa while (aktElement != null) {
System.out.printin(aktElement.HoleWert());

Kapitel 8 aktElement = aktElement.HoleWeiter();

Dynamische } }

Datenstrukturen

public void ZeigeListeRekursiv() {
ZeigelListeRekursiv(kopT);

}

private void ZeigeListeRekursiv(Element aktElement){
1T (aktElement!= null) {
System.out.println(aktElement.HoleWert());
ZeigelListeRekursiv(aktElement.HoleWeiter());

}

In diesem Kapitel: }

* Prolog ¥

* Grundlagen

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

* Prolog
* Grundlagen

Durchlaufen einer Liste Il

= Durchlauf einer Liste in umgekehrter Reihenfolge

- Referenz Tuss verweist zwar auf das letzte Element
einer Liste, kann jedoch nicht von dort zum vorletzten
Element gelangen.

= Fur eine umgekehrte Ausgabe mussen alle
Listenelemente gemerkt werden, wahrend die Liste vom
Anfang zum Ende durchlauft.

= Erst nach einmaligem Durchlaufen kann vom letzten bis
zum ersten Element gedruckt werden.

> GrolRer Aufwand?

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

* Prolog
* Grundlagen

Durchlaufen einer Liste Il

Einsatz der rekursiven Variante
= analog zu ZeigeListeRekursiv()
= aber: rekursiver Aufruf und Ausgabe vertauscht

public void ZeigeListeUmgekehrt() {
ZeigelListeUmgekehrt(kopf);

}

private void ZeigeListeUngekehrt(Element aktElement) {
1T (aktElement!= null) {
ZeigeListeUmgekehrt(aktElement.HoleWeiter());
System.out.printin(aktElement.HoleWert());

}
¥

private void ZeigelListeRekursiv(Element aktElement){
1T (aktElement!= null) {
System.out.printin(aktElement.HoleWert());
ZeigeListeRekursiv(aktElement.HoleWeiter());

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

* Prolog
* Grundlagen

Etwas testen...

public class TestListe {

b3y

Liste meineListe =
meineListe.
meineListe.
meineListe.
meineListe.

meineListe.
meineListe.

new Liste(42);
OrdneEin(7);
OrdneEin(73);
OrdneEin(l);
OrdneEin(50);

ZeigeListeRekursiv();
ZeigelListeUmgekehrt();

public static void main(String[] args) {

> run TestListe
1
7
42
50
73
73
50
42
Z
1

EINI LogWing /
WiMa

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:

* Prolog
* Grundlagen

Doppelt verkettete Listen

> Wird der Durchlauf vom Ende einer Liste zu ihrem Anfang
haufig bendtigt, dann ist die lineare Verkettung von vorne
nach hinten nicht der ideale Navigationspfad.

= Besser ware es dann, auch eine Ruckwartsverkettung zu
haben.

= Aufgrund dieser Uberlegung kommt man zur doppelt
verketteten Liste.

> Die lokale Klasse Element enthalt eine zweite Referenz
voran, die genau entgegengesetzt zu wel ter gerichtet
ist und somit fur jedes Element innerhalb der Liste auf
seinen direkten Vorganger verweist.

Zusammenfassung

> Dynamische Datenstrukturen
= kdnnen zur Laufzeit wachsen und schrumpfen.

= werden durch Nutzungsinformation und
Verwaltungsinformation realisiert.

EINI LogWing /
WiMa - Verwaltungsinformation ist eine Referenz auf eigene
Klasse.
Kapitel 8
Dynamische
Datenstrukturen .
= Listen

= Einfache Listen
= Einfache Listen mit Referenz auf das letzte Element
= Sortierte Listen

= Doppelt verkettete Listen

In diesem Kapitel: » \\/je geht es weiter?
* Prolog

* Grundlagen

(lecnnische universitat

" ® Listen

EINI-

Artikel im EINI-Wiki:

- Liste

Kapitel 8

Dynamische
Datenstrukturen

In diesem Kapitel:
* Prolog
* Grundlagen

(lecnnische universitat

http://129.217.47.110/index.php/Hauptseite

Ubersicht

@

Vielen Dank fur lhre Aufmerksamkeit!

Nachste Termine

> Nachste Vorlesung — WiMa 29.1.2026, 08:15
> Nachste Vorlesung — LogWing 30.1.2026, 08:15

	EINI �LogWing/WiMa/MP��Einführung in die Informatik für Naturwissenschaftler und Ingenieure��Vorlesung 2 SWS WS 25/26�
	Thema
	Übersicht
	Grundlagen dynamischer Datenstrukturen I
	Grundlagen dynamischer Datenstrukturen II
	Grundlagen dynamischer Datenstrukturen III
	Grundlagen dynamischer Datenstrukturen IV
	Grundlagen dynamischer Datenstrukturen V
	Dynamische Datenstrukturen – Grundlagen
	Listen
	Bestandteile einer Liste – Element
	Bestandteile einer Liste
	Konstruktion von Listen
	Schema der Klasse Lineare Liste
	Funktionalität einer Liste
	Klasse Element: Vollständige Implementierung I
	Klasse Element: Vollständige Implementierung II
	An den Anfang der Liste einfügen I
	An den Anfang der Liste einfügen II
	Ausgeben der Liste I
	Ausgeben der Liste II
	An das Ende der Liste anfügen I
	An das Ende der Liste anfügen II
	Etwas testen…
	Effizienz der Klasse Lineare Liste
	Klasse EffizienteListe I
	Klasse EffizienteListe II
	Klasse EffizienteListe III
	Klasse EffizienteListe IV
	Klasse EffizienteListe V
	Einfügen in geordnete Liste I
	Einfügen in geordnete Liste II
	Einfügen in geordnete Liste III
	Einfügen in geordnete Liste IV
	Einordnen mit Hilfe von Positioniere
	Durchlaufen einer Struktur
	Durchlaufen einer Liste I
	Durchlaufen einer Liste II
	Durchlaufen einer Liste III
	Etwas testen…
	Doppelt verkettete Listen
	Zusammenfassung
	Listen
	Übersicht

