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Kapitel 8
Dynamische Datenstrukturen
 Listen
► Bäume

Unterlagen
► Dißmann, Stefan und Ernst-Erich Doberkat: Einführung in die 

objektorientierte Programmierung mit Java, 2. Auflage. 
München [u.a.]: Oldenbourg, 2002.

 (→ ZB oder Volltext aus Uninetz) 
► Echtle, Klaus und Michael Goedicke: Lehrbuch der 

Programmierung mit Java. Heidelberg: dpunkt-Verl, 2000. 
(→ ZB)
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Thema
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Begriffe

Spezifikationen, Algorithmen, formale Sprachen
Programmiersprachenkonzepte
Grundlagen der imperativen Programmierung

Algorithmen und Datenstrukturen
Felder
Sortieren
Rekursive Datenstrukturen (Baum, binärer Baum, Heap)
Heapsort

 Objektorientierung
Einführung
Vererbung

 Anwendung
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► Dynamische Datenstrukturen
► Strukturen, die je nach Bedarf und damit dynamisch 

wachsen und schrumpfen können.
► ≠ Felder/Arrays!

►  Grundidee
► Dynamische Datenstrukturen bilden Mengen mit 

typischen Operationen ab.
► Einzelne Elemente speichern die zu speichernden/ 

verarbeitenden Daten.
► Einzelne Elemente werden durch dynamische 

Datenstrukturen verknüpft.
► → Trennung von Datenstrukturierung & Nutzdaten
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► Art der Elemente ist problemabhängig, variiert daher je 
nach Anwendung.

►  Für die Verknüpfung existieren typische Muster:
► Listen,
► Bäume,
► Graphen,
► ...
 

►  Objektorientierte Sicht
Dynamische Datenstrukturen sind durch die Art der 
Verknüpfung der Elemente und die Zugriffsmethoden 
charakterisiert.
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Wichtige dynamische Datenstrukturen:

► Listen
► lineare Listen
► doppelt verkettete Listen

► Bäume
► binäre Bäume
► binäre Suchbäume

► Graphen
► gerichtete Graphen
► ungerichtete Graphen

► Stack
► Schlangen
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Fragen zur Organisation der Datenstrukturen

► Funktionen
► Wie wird eine Instanz der Struktur initialisiert?
► Wie werden Daten 

• eingefügt?
• modifiziert?
• entfernt?

► Wie wird in den Strukturen navigiert?

► Wie werden einzelne Werte in einer Struktur 
wiedergefunden?

► Wie werden alle in einer Struktur abgelegten Werte 
besucht?
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► Aufbau von dynamischen Datenstrukturen 
► Klassen enthalten Attribute (hier: weiter), die 

Referenzen auf Objekte der eigenen Klasse darstellen.
► Diese Attribute schaffen die Möglichkeit, ein weiteres 

Objekt der Klasse an eine Referenz zu binden.
► Die einzelnen Objekte sind in der Lage, gemeinsam eine 

komplexe Struktur durch aufeinander verweisende 
Referenzen zu bilden.
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  Element weiter;
  ... 
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Artikel im EINI-Wiki:

→ Dynamische Datenstruktur
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► Listen definieren eine Reihenfolge von Elementen, die 
gemäß dieser Reihenfolge miteinander verknüpft sind.

►  Typische Zugriffsmethoden
► Anfügen eines neuen Elementes
► Einfügen eines neuen Elementes an einer bestimmten 

Position in der Liste
► Auslesen eines beliebigen Elementes der Liste
► Entfernen eines beliebigen Elementes der Liste
► Abfrage, ob die Liste leer ist
► Leeren der Liste

► Auch wenn nicht alle Methoden realisiert sind, wird die 
Struktur als Liste bezeichnet.
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class Element {   
private int wert;         //Nutzinformation
private Element weiter;   //Verwaltungsinformation

public Element(int i) {
    wert = i; 
    weiter = null;

    }
} 

► Deklaration einer Klasse Element mit zwei privaten 
Attributen und einem Konstruktor

► Ein Objekt vom Typ Element enthält als Attribute eine ganze Zahl 
und eine Referenz auf ein weiteres Objekt des Typs Element.

► Jedes Objekt vom Typ Element besitzt eine Referenz auf ein 
weiteres Element: Man kann sie miteinander verketten.
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Bestandteile einer Liste

Klasse Liste

Attribut kopf vom Typ 
Element

Konstruktor, 
parameterlos

Konstruktor,
 1 int-Parameter

► Woraus besteht eine Liste?
► aus Elementen, die in der Liste gespeichert werden
► aus der Liste selbst, die existiert, auch wenn kein 

Element gespeichert ist

 public class Liste {
  private Element kopf;
  
  public Liste() {
    kopf = null;
   }

  public Liste(int w) {
    kopf = new Element(w); 
   }
 }
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► Eine lineare Liste kann auf verschiedene Arten konstruiert 
werden
► Anhängen eines neuen Elementes

• an den Anfang,
• in die Mitte oder 
• an das Ende einer bereits bestehenden Liste.

► Zugriff auf die Liste wird durch eine Referenz realisiert,
► die in der Klasse Liste realisiert ist und
► die auf das erste Element der Liste zeigt.
► Enthält eine Liste keine Elemente, zeigt die Referenz auf 
null.
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meineListe
kopf

Liste

meineListe
kopf

weiter
wert: 42

Liste Element

► Eine leere Liste erzeugen

    Liste meineListe = new Liste();

 

 

► Eine Liste mit einem Element erzeugen

    Liste meineListe = new Liste(42);
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Was fehlt noch?

► Typische Zugriffsmethoden
► Anfügen eines neuen Elementes
► Einfügen eines neuen Elementes an einer bestimmten 

Position in der Liste
► Auslesen eines beliebigen Elementes der Liste
► Entfernen eines beliebigen Elementes der Liste
► Abfrage, ob die Liste leer ist
► Leeren der Liste
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Funktionalität einer Liste
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Klasse Element: Vollständige Implementierung I

class Element { 
  
 private int wert; 
 private Element weiter; 

 public Element(int i) {
   wert = i;  weiter = null;
 }

 public Element(int i, Element e) {
   wert = i; weiter = e; 
 }

 public void SetzeWert(int i) {wert = i;}

 public int HoleWert() {return wert;}

 public void SetzeWeiter(Element e) {weiter = e;}

 public Element HoleWeiter() {return weiter;}
}
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Anmerkungen

► Es existiert ein zusätzlicher Konstruktor, der das neue 
Element vor ein bestehendes Element einreiht.

► Implementierung von Get- und Set-Methoden für den 
Zugriff auf die privaten Attribute
► public void SetzeWert(int i)

► public int HoleWert()
 
► public void SetzeWeiter(Element e) 

► public Element HoleWeiter() 
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meineListe
kopf

weiter
wert: 42

Liste Element

meineListe
kopf

weiter weiter
wert: 42 wert: 73

Liste Element Element

class Liste {
   ... 
   public void FuegeEin(int neuerWert) {
      kopf = new Element(neuerWert, kopf);
   }
}

Liste meineListe = new Liste(42);

meineListe.FuegeEin(73);
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Anmerkungen zu FuegeEin()

► Ein neues Element wird erzeugt
► kopf = new Element(neuerWert, kopf);
► neuerWert enthält die Nutzungsinformation.
► kopf enthält die Referenz auf das alte erste Element.
► Das neue Element referenziert das alte erste Element.

► Das neue Element wird zum neuen Kopf der Liste
► kopf = new Element(neuerWert, kopf);

► Wichtig: Die Referenz auf das alte erste Element darf nicht 
verloren gehen!
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public class Liste {
   ... 
 public void ZeigeListe() {
   Element aktuellesElement = this.kopf;
   while (aktuellesElement != null) {
     System.out.println(aktuellesElement.HoleWert());
     aktuellesElement = aktuellesElement.HoleWeiter();
   }
 }
}

 Liste meineListe = new Liste(42);
 meineListe.FuegeEin(73);
 meineListe.ZeigeListe();

> run TestListe
73
42
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Ausgeben der Liste I
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Anmerkungen zu ZeigeListe()
► Anzahl der Elemente variabel, daher Programmierung einer 

Schleife notwendig
► Start ist das Element, auf das kopf verweist

 Element aktuellesElement = this.kopf;

► Ist kein Element in der Liste gespeichert, verweist kopf auf 
null.

► Solange das aktuelle Element != null gilt
► Der Wert des aktuellen Elementes wird ausgegeben:
System.out.println( 
aktuellesElement.HoleWert());

► Das aktuelle Element wird auf das nächste gesetzt:
aktuellesElement = 
aktuellesElement.HoleWeiter();
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An das Ende der Liste anfügen I

meineListe
kopf

weiter weiter
wert: 42 wert: 73
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public class Liste {
   ... 
 public void FuegeAn(int neuerWert) {
  Element aktElement = this.kopf;
  if (aktElement == null)
     FuegeEin(neuerWert);
  else { 
     while (aktElement.HoleWeiter() != null) {
        aktElement = aktElement.HoleWeiter();
     }
     aktElement.SetzeWeiter(new Element(neuerWert));
}}}

 Liste meineListe = new Liste(42);
 meineListe.FuegeAn(73);
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Anmerkungen zu FuegeAn()
► Anzahl der Elemente variabel, daher Programmierung einer

Schleife notwendig
► Start ist das Element, auf das kopf verweist

 Element aktElement = this.kopf;

► Ist kein Element in der Liste gespeichert, kann das neue 
Element mit FuegeEin() eingetragen werden.

► Ansonsten muss das Ende der Liste gesucht werden
  while (aktElement.HoleWeiter() != null) {
    aktElement = aktElement.HoleWeiter();
  }

► Dann kann dort das neue Element mit dem letzten Element 
verbunden werden:

  aktElement.SetzeWeiter(new Element(neuerWert));
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public class TestListe {
  public static void main(String[] args) {
    Liste meineListe = new Liste(42);
    meineListe.FuegeEin(73);
    meineListe.ZeigeListe(); 

    meineListe = new Liste();
    meineListe.ZeigeListe();
    meineListe.FuegeEin(42);
    meineListe.FuegeAn(73);
    meineListe.ZeigeListe();
  }
}

> run TestListe
73
42
42
73
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Etwas testen…
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Aufwand
► Erzeugen einer Liste

► eine Instanziierung
► FuegeEin()

► unabhängig von der Anzahl der gespeicherten Elemente
► ZeigeListe()

► abhängig von der Anzahl der gespeicherten Elemente
► FuegeAn()

► Erfordert bei jedem Aufruf ein vollständiges Durchlaufen 
der Liste.

► Eine sehr viel effizientere Realisierung dieser 
Listenoperation wäre möglich, wenn

• neben dem ersten Element 
• auch das letzte Element der Liste

     unmittelbar erreichbar wäre.
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Änderungen an den Attributen & Konstruktoren
► Neues Attribut fuss, das das letzte Element der Liste 

referenziert
► Setzen von fuss in die Konstruktoren

public class EffizienteListe {
  
  private Element kopf;
  private Element fuss;
  
  public EffizienteListe() {
    kopf = null;
    fuss = null;
  }
  
  public EffizienteListe(int w) {
    kopf = new Element(w);
    fuss = kopf;
  }
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Änderungen an der Methode FuegeAn()
► kein Suchen nach dem Ende der Liste
► Das letzte Element der Liste ist immer in fuss gespeichert.
► Direkter Zugriff auf das letzte Element ist möglich.

  public void FuegeAn(int neuerWert) { 
    Element neuesElement = new Element(neuerWert);

    if (fuss == null) {
      kopf = neuesElement;
      fuss = neuesElement;
    } else {
      fuss.SetzeWeiter(neuesElement);
      fuss = neuesElement;
    }
  }
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Änderungen an der Methode ZeigeListe()
► keine

public void ZeigeListe() {
 Element aktuellesElement = this.kopf;
 while (aktuellesElement != null) {
   System.out.println( aktuellesElement.HoleWert());
   aktuellesElement = aktuellesElement.HoleWeiter();
 }
}
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Änderungen an der Methode FuegeEin()
► Sonderfall: Nur falls noch kein Element in der Liste ist, muss 

die fuss-Referenz berücksichtigt werden!

  public void FuegeEin(int neuerWert) { 
    kopf = new Element(neuerWert, kopf);
    if (fuss == null) 
      fuss = kopf;
  }
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Änderungen an der Klasse Element
► keine

Beobachtungen:
► Alle Änderungen betreffen die Verwaltungsinformationen 

der Klasse Liste.
► Die Klasse Element bleibt völlig unbeeinflusst.
► Die Methode fuegeAn() hat nun eine konstante Laufzeit.
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In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing / 
WiMa

Kapitel 8
Dynamische 
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa



► Problem: Einordnen eines Werts in eine aufsteigend 
geordnete Liste

► Keine zwei Elemente haben die identische Belegung des 
Attributs wert.

► Der Algorithmus ist auf natürliche Weise rekursiv.
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Einfügen in geordnete Liste I
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► Idee
► Sei x der einzufügende Wert
► 1. Fall: x kleiner als 1. Element => Einfügen am Anfang
► 2. Fall: x größer als 1. Element: 

• Suche passende Position in der Liste
• Trenne Liste in Anfangs- und Endteil auf
• Setze Element an den Anfang des Endteils und 

verbinde Teillisten
• Falls x größer als das letzte Element der Liste, ist x 

das neue Ende der Liste.
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Präzisierung des Algorithmus
Folgende Fälle sind zu unterscheiden:

► kopf == null
► Einen Sonderfall bildet die Situation, dass die Liste leer 

ist, also noch kein Element enthält. 
► Es muss ein erstes Element angelegt werden, das 

sicherlich eine geordnete, einelementige Liste bildet.

► kopf != null:
► Wir definieren eine private Methode Positioniere, 

die als Parameter den einzuordnenden Wert und eine 
Referenz auf den Anfang einer Teilliste übergeben 
bekommt.

► Als Ergebnis gibt Positioniere eine Referenz 
auf Element zurück, die auf die Teilliste verweist, in 
die x einsortiert ist.
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► Sei anfang die an Positioniere übergebene Teilliste 
und gelte
► x < anfang.wert:

• Erzeuge ein neues Element und füge es am Anfang 
der bei anfang beginnenden Teilliste ein.

► x > anfang.wert: 
• Füge x in die mit anfang.weiter beginnende 

Restliste ein, indem hierfür Positioniere mit 
den entsprechenden Parametern erneut aufgerufen 
wird.
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Einordnen mit Hilfe von Positioniere
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class Liste {
 ...
 
  public void OrdneEin(int i) {
   kopf  = Positioniere(kopf, i);
 }

  private Element Positioniere(Element einElement, int i) {
  
    if (einElement == null) 
        einElement = new Element(i);

    else {
       if (i < einElement.HoleWert()) {
           einElement = new Element(i, einElement);
        }
      
       if (i > einElement.HoleWert())  {
           einElement.SetzeWeiter(
         Positioniere(einElement.HoleWeiter(), i));
       }
    }    
            
    return einElement;
  }
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► In vielen Anwendungen, die auf dynamischen 
Datenstrukturen basieren, besteht die Notwendigkeit, 
alle Elemente der Struktur genau einmal zu besuchen.

► Dies gilt für Listen wie für andere dynamische 
Strukturen.

► Dieses möglichst nur einmalige Besuchen aller 
Elemente nennt man Durchlaufen einer Struktur.

► Anwendungsbeispiele: Prüfen auf Vorhandensein, 
Einsortieren, aber auch Ausgabe
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Durchlaufen einer Struktur

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing / 
WiMa

Kapitel 8
Dynamische 
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa



37

Durchlaufen einer Liste I
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class Liste {

 ...

  public void ZeigeListe() {
    Element aktElement = this.kopf;
    while (aktElement != null) {
      System.out.println(aktElement.HoleWert());
      aktElement = aktElement.HoleWeiter();
    }
  }

 public void ZeigeListeRekursiv() {
    ZeigeListeRekursiv(kopf);
  }
  
  private void ZeigeListeRekursiv(Element aktElement){
    if (aktElement!= null) {
      System.out.println(aktElement.HoleWert());
      ZeigeListeRekursiv(aktElement.HoleWeiter());
    }
  }
}
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► Durchlauf einer Liste in umgekehrter Reihenfolge
► Referenz fuss verweist zwar auf das letzte Element 

einer Liste, kann jedoch nicht von dort zum vorletzten 
Element gelangen.

► Für eine umgekehrte Ausgabe müssen alle 
Listenelemente gemerkt werden, während die Liste vom 
Anfang zum Ende durchläuft.

► Erst nach einmaligem Durchlaufen kann vom letzten bis  
zum ersten Element gedruckt werden.

► Großer Aufwand?
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Durchlaufen einer Liste II

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing / 
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Einsatz der rekursiven Variante
► analog zu ZeigeListeRekursiv()
► aber: rekursiver Aufruf und Ausgabe vertauscht
 
public void ZeigeListeUmgekehrt() {
  ZeigeListeUmgekehrt(kopf);
}
  
private void ZeigeListeUmgekehrt(Element aktElement) {
  if (aktElement!= null) {
      ZeigeListeUmgekehrt(aktElement.HoleWeiter());
      System.out.println(aktElement.HoleWert());
  }
}

private void ZeigeListeRekursiv(Element aktElement){
  if (aktElement!= null) {
      System.out.println(aktElement.HoleWert());
      ZeigeListeRekursiv(aktElement.HoleWeiter());
  }
}
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Durchlaufen einer Liste III

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen
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public class TestListe {
  public static void main(String[] args) {
    
   Liste meineListe = new Liste(42);
   meineListe.OrdneEin(7);
   meineListe.OrdneEin(73);
   meineListe.OrdneEin(1);
   meineListe.OrdneEin(50);

   meineListe.ZeigeListeRekursiv();
   meineListe.ZeigeListeUmgekehrt();
}}
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Etwas testen…

> run TestListe
1
7
42
50
73
73
50
42
7
1

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing / 
WiMa

Kapitel 8
Dynamische 
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa



► Wird der Durchlauf vom Ende einer Liste zu ihrem Anfang 
häufig benötigt, dann ist die lineare Verkettung von vorne 
nach hinten nicht der ideale Navigationspfad.

► Besser wäre es dann, auch eine Rückwärtsverkettung zu 
haben.

► Aufgrund dieser Überlegung kommt man zur doppelt 
verketteten Liste. 

► Die lokale Klasse Element enthält eine zweite Referenz 
voran, die genau entgegengesetzt zu weiter gerichtet 
ist und somit für jedes Element innerhalb der Liste auf 
seinen direkten Vorgänger verweist.
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Doppelt verkettete Listen

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen
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► Dynamische Datenstrukturen
► können zur Laufzeit wachsen und schrumpfen.
► werden durch Nutzungsinformation und 

Verwaltungsinformation realisiert.
► Verwaltungsinformation ist eine Referenz auf eigene 

Klasse.

► Listen
► Einfache Listen
► Einfache Listen mit Referenz auf das letzte Element
► Sortierte Listen
► Doppelt verkettete Listen

► Wie geht es weiter?
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Zusammenfassung

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen
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Artikel im EINI-Wiki:

→ Liste
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Listen

Kapitel 8
Dynamische 
Datenstrukturen

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

http://129.217.47.110/index.php/Hauptseite
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Übersicht

Vielen Dank für Ihre Aufmerksamkeit!

Nächste Termine

► Nächste Vorlesung – WiMa       29.1.2026, 08:15
► Nächste Vorlesung – LogWing      30.1.2026, 08:15 
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