
EINI
LogWing/WiMa/MP

Einführung in die Informatik für
Naturwissenschaftler und Ingenieure

Vorlesung 2 SWS WS 25/26

Dr. Lars Hildebrand
Fakultät für Informatik – Technische Universität Dortmund

lars.hildebrand@tu-dortmund.de
http://ls14-www.cs.tu-dortmund.de

Dr. Lars Hildebrand – EINI LogWing / WiMa 1

Kapitel 8
Dynamische Datenstrukturen
 Listen
► Bäume

Unterlagen
► Dißmann, Stefan und Ernst-Erich Doberkat: Einführung in die

objektorientierte Programmierung mit Java, 2. Auflage.
München [u.a.]: Oldenbourg, 2002.

 (→ ZB oder Volltext aus Uninetz)
► Echtle, Klaus und Michael Goedicke: Lehrbuch der

Programmierung mit Java. Heidelberg: dpunkt-Verl, 2000.
(→ ZB)

Dr. Lars Hildebrand – EINI LogWing / WiMa 2

Thema

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Begriffe

Spezifikationen, Algorithmen, formale Sprachen
Programmiersprachenkonzepte
Grundlagen der imperativen Programmierung

Algorithmen und Datenstrukturen
Felder
Sortieren
Rekursive Datenstrukturen (Baum, binärer Baum, Heap)
Heapsort

 Objektorientierung
Einführung
Vererbung

 Anwendung

3

Übersicht

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen Dr. Lars Hildebrand – EINI LogWing / WiMa

► Dynamische Datenstrukturen
► Strukturen, die je nach Bedarf und damit dynamisch

wachsen und schrumpfen können.
► ≠ Felder/Arrays!

► Grundidee
► Dynamische Datenstrukturen bilden Mengen mit

typischen Operationen ab.
► Einzelne Elemente speichern die zu speichernden/

verarbeitenden Daten.
► Einzelne Elemente werden durch dynamische

Datenstrukturen verknüpft.
► → Trennung von Datenstrukturierung & Nutzdaten

4

Grundlagen dynamischer Datenstrukturen I

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

► Art der Elemente ist problemabhängig, variiert daher je
nach Anwendung.

► Für die Verknüpfung existieren typische Muster:
► Listen,
► Bäume,
► Graphen,
► ...

► Objektorientierte Sicht
Dynamische Datenstrukturen sind durch die Art der
Verknüpfung der Elemente und die Zugriffsmethoden
charakterisiert.

5

Grundlagen dynamischer Datenstrukturen II

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

Wichtige dynamische Datenstrukturen:

► Listen
► lineare Listen
► doppelt verkettete Listen

► Bäume
► binäre Bäume
► binäre Suchbäume

► Graphen
► gerichtete Graphen
► ungerichtete Graphen

► Stack
► Schlangen

6

Grundlagen dynamischer Datenstrukturen III

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

Fragen zur Organisation der Datenstrukturen

► Funktionen
► Wie wird eine Instanz der Struktur initialisiert?
► Wie werden Daten

• eingefügt?
• modifiziert?
• entfernt?

► Wie wird in den Strukturen navigiert?

► Wie werden einzelne Werte in einer Struktur
wiedergefunden?

► Wie werden alle in einer Struktur abgelegten Werte
besucht?

7

Grundlagen dynamischer Datenstrukturen IV

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

► Aufbau von dynamischen Datenstrukturen
► Klassen enthalten Attribute (hier: weiter), die

Referenzen auf Objekte der eigenen Klasse darstellen.
► Diese Attribute schaffen die Möglichkeit, ein weiteres

Objekt der Klasse an eine Referenz zu binden.
► Die einzelnen Objekte sind in der Lage, gemeinsam eine

komplexe Struktur durch aufeinander verweisende
Referenzen zu bilden.

8

Grundlagen dynamischer Datenstrukturen V

class Element {
 Element weiter;
 ...
}

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

Artikel im EINI-Wiki:

→ Dynamische Datenstruktur

Dr. Lars Hildebrand – EINI LogWing / WiMa 9

Dynamische Datenstrukturen – Grundlagen

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

http://129.217.47.110/index.php/Hauptseite

► Listen definieren eine Reihenfolge von Elementen, die
gemäß dieser Reihenfolge miteinander verknüpft sind.

► Typische Zugriffsmethoden
► Anfügen eines neuen Elementes
► Einfügen eines neuen Elementes an einer bestimmten

Position in der Liste
► Auslesen eines beliebigen Elementes der Liste
► Entfernen eines beliebigen Elementes der Liste
► Abfrage, ob die Liste leer ist
► Leeren der Liste

► Auch wenn nicht alle Methoden realisiert sind, wird die
Struktur als Liste bezeichnet.

10

Listen

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

class Element {
private int wert; //Nutzinformation
private Element weiter; //Verwaltungsinformation

public Element(int i) {
 wert = i;
 weiter = null;

 }
}

► Deklaration einer Klasse Element mit zwei privaten
Attributen und einem Konstruktor

► Ein Objekt vom Typ Element enthält als Attribute eine ganze Zahl
und eine Referenz auf ein weiteres Objekt des Typs Element.

► Jedes Objekt vom Typ Element besitzt eine Referenz auf ein
weiteres Element: Man kann sie miteinander verketten.

11

Bestandteile einer Liste – Element

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

12

Bestandteile einer Liste

Klasse Liste

Attribut kopf vom Typ
Element

Konstruktor,
parameterlos

Konstruktor,
 1 int-Parameter

► Woraus besteht eine Liste?
► aus Elementen, die in der Liste gespeichert werden
► aus der Liste selbst, die existiert, auch wenn kein

Element gespeichert ist

 public class Liste {
 private Element kopf;

 public Liste() {
 kopf = null;
 }

 public Liste(int w) {
 kopf = new Element(w);
 }
 }

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

► Eine lineare Liste kann auf verschiedene Arten konstruiert
werden
► Anhängen eines neuen Elementes

• an den Anfang,
• in die Mitte oder
• an das Ende einer bereits bestehenden Liste.

► Zugriff auf die Liste wird durch eine Referenz realisiert,
► die in der Klasse Liste realisiert ist und
► die auf das erste Element der Liste zeigt.
► Enthält eine Liste keine Elemente, zeigt die Referenz auf
null.

13

Konstruktion von Listen

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

meineListe
kopf

Liste

meineListe
kopf

weiter
wert: 42

Liste Element

► Eine leere Liste erzeugen

 Liste meineListe = new Liste();

► Eine Liste mit einem Element erzeugen

 Liste meineListe = new Liste(42);

14

Schema der Klasse Lineare Liste

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

Was fehlt noch?

► Typische Zugriffsmethoden
► Anfügen eines neuen Elementes
► Einfügen eines neuen Elementes an einer bestimmten

Position in der Liste
► Auslesen eines beliebigen Elementes der Liste
► Entfernen eines beliebigen Elementes der Liste
► Abfrage, ob die Liste leer ist
► Leeren der Liste

15

Funktionalität einer Liste

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

16

Klasse Element: Vollständige Implementierung I

class Element {

 private int wert;
 private Element weiter;

 public Element(int i) {
 wert = i; weiter = null;
 }

 public Element(int i, Element e) {
 wert = i; weiter = e;
 }

 public void SetzeWert(int i) {wert = i;}

 public int HoleWert() {return wert;}

 public void SetzeWeiter(Element e) {weiter = e;}

 public Element HoleWeiter() {return weiter;}
}

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

Anmerkungen

► Es existiert ein zusätzlicher Konstruktor, der das neue
Element vor ein bestehendes Element einreiht.

► Implementierung von Get- und Set-Methoden für den
Zugriff auf die privaten Attribute
► public void SetzeWert(int i)

► public int HoleWert()

► public void SetzeWeiter(Element e)

► public Element HoleWeiter()

17

Klasse Element: Vollständige Implementierung II

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

meineListe
kopf

weiter
wert: 42

Liste Element

meineListe
kopf

weiter weiter
wert: 42 wert: 73

Liste Element Element

class Liste {
 ...
 public void FuegeEin(int neuerWert) {
 kopf = new Element(neuerWert, kopf);
 }
}

Liste meineListe = new Liste(42);

meineListe.FuegeEin(73);

18

An den Anfang der Liste einfügen I

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

Anmerkungen zu FuegeEin()

► Ein neues Element wird erzeugt
► kopf = new Element(neuerWert, kopf);
► neuerWert enthält die Nutzungsinformation.
► kopf enthält die Referenz auf das alte erste Element.
► Das neue Element referenziert das alte erste Element.

► Das neue Element wird zum neuen Kopf der Liste
► kopf = new Element(neuerWert, kopf);

► Wichtig: Die Referenz auf das alte erste Element darf nicht
verloren gehen!

19

An den Anfang der Liste einfügen II

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

public class Liste {
 ...
 public void ZeigeListe() {
 Element aktuellesElement = this.kopf;
 while (aktuellesElement != null) {
 System.out.println(aktuellesElement.HoleWert());
 aktuellesElement = aktuellesElement.HoleWeiter();
 }
 }
}

 Liste meineListe = new Liste(42);
 meineListe.FuegeEin(73);
 meineListe.ZeigeListe();

> run TestListe
73
42

20

Ausgeben der Liste I

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

Anmerkungen zu ZeigeListe()
► Anzahl der Elemente variabel, daher Programmierung einer

Schleife notwendig
► Start ist das Element, auf das kopf verweist

 Element aktuellesElement = this.kopf;

► Ist kein Element in der Liste gespeichert, verweist kopf auf
null.

► Solange das aktuelle Element != null gilt
► Der Wert des aktuellen Elementes wird ausgegeben:
System.out.println(
aktuellesElement.HoleWert());

► Das aktuelle Element wird auf das nächste gesetzt:
aktuellesElement =
aktuellesElement.HoleWeiter();

21

Ausgeben der Liste II

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

22

An das Ende der Liste anfügen I

meineListe
kopf

weiter weiter
wert: 42 wert: 73

Liste Element ElementIn diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

public class Liste {
 ...
 public void FuegeAn(int neuerWert) {
 Element aktElement = this.kopf;
 if (aktElement == null)
 FuegeEin(neuerWert);
 else {
 while (aktElement.HoleWeiter() != null) {
 aktElement = aktElement.HoleWeiter();
 }
 aktElement.SetzeWeiter(new Element(neuerWert));
}}}

 Liste meineListe = new Liste(42);
 meineListe.FuegeAn(73);

Dr. Lars Hildebrand – EINI LogWing / WiMa

Anmerkungen zu FuegeAn()
► Anzahl der Elemente variabel, daher Programmierung einer

Schleife notwendig
► Start ist das Element, auf das kopf verweist

 Element aktElement = this.kopf;

► Ist kein Element in der Liste gespeichert, kann das neue
Element mit FuegeEin() eingetragen werden.

► Ansonsten muss das Ende der Liste gesucht werden
 while (aktElement.HoleWeiter() != null) {
 aktElement = aktElement.HoleWeiter();
 }

► Dann kann dort das neue Element mit dem letzten Element
verbunden werden:

 aktElement.SetzeWeiter(new Element(neuerWert));

23

An das Ende der Liste anfügen II

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

public class TestListe {
 public static void main(String[] args) {
 Liste meineListe = new Liste(42);
 meineListe.FuegeEin(73);
 meineListe.ZeigeListe();

 meineListe = new Liste();
 meineListe.ZeigeListe();
 meineListe.FuegeEin(42);
 meineListe.FuegeAn(73);
 meineListe.ZeigeListe();
 }
}

> run TestListe
73
42
42
73

24

Etwas testen…

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

Aufwand
► Erzeugen einer Liste

► eine Instanziierung
► FuegeEin()

► unabhängig von der Anzahl der gespeicherten Elemente
► ZeigeListe()

► abhängig von der Anzahl der gespeicherten Elemente
► FuegeAn()

► Erfordert bei jedem Aufruf ein vollständiges Durchlaufen
der Liste.

► Eine sehr viel effizientere Realisierung dieser
Listenoperation wäre möglich, wenn

• neben dem ersten Element
• auch das letzte Element der Liste

 unmittelbar erreichbar wäre.
25

Effizienz der Klasse Lineare Liste

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

Änderungen an den Attributen & Konstruktoren
► Neues Attribut fuss, das das letzte Element der Liste

referenziert
► Setzen von fuss in die Konstruktoren

public class EffizienteListe {

 private Element kopf;
 private Element fuss;

 public EffizienteListe() {
 kopf = null;
 fuss = null;
 }

 public EffizienteListe(int w) {
 kopf = new Element(w);
 fuss = kopf;
 }

26

Klasse EffizienteListe I

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

Änderungen an der Methode FuegeAn()
► kein Suchen nach dem Ende der Liste
► Das letzte Element der Liste ist immer in fuss gespeichert.
► Direkter Zugriff auf das letzte Element ist möglich.

 public void FuegeAn(int neuerWert) {
 Element neuesElement = new Element(neuerWert);

 if (fuss == null) {
 kopf = neuesElement;
 fuss = neuesElement;
 } else {
 fuss.SetzeWeiter(neuesElement);
 fuss = neuesElement;
 }
 }

27

Klasse EffizienteListe II

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

Änderungen an der Methode ZeigeListe()
► keine

public void ZeigeListe() {
 Element aktuellesElement = this.kopf;
 while (aktuellesElement != null) {
 System.out.println(aktuellesElement.HoleWert());
 aktuellesElement = aktuellesElement.HoleWeiter();
 }
}

28

Klasse EffizienteListe III

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

Änderungen an der Methode FuegeEin()
► Sonderfall: Nur falls noch kein Element in der Liste ist, muss

die fuss-Referenz berücksichtigt werden!

 public void FuegeEin(int neuerWert) {
 kopf = new Element(neuerWert, kopf);
 if (fuss == null)
 fuss = kopf;
 }

29

Klasse EffizienteListe IV

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

Änderungen an der Klasse Element
► keine

Beobachtungen:
► Alle Änderungen betreffen die Verwaltungsinformationen

der Klasse Liste.
► Die Klasse Element bleibt völlig unbeeinflusst.
► Die Methode fuegeAn() hat nun eine konstante Laufzeit.

30

Klasse EffizienteListe V

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

► Problem: Einordnen eines Werts in eine aufsteigend
geordnete Liste

► Keine zwei Elemente haben die identische Belegung des
Attributs wert.

► Der Algorithmus ist auf natürliche Weise rekursiv.

31

Einfügen in geordnete Liste I

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

► Idee
► Sei x der einzufügende Wert
► 1. Fall: x kleiner als 1. Element => Einfügen am Anfang
► 2. Fall: x größer als 1. Element:

• Suche passende Position in der Liste
• Trenne Liste in Anfangs- und Endteil auf
• Setze Element an den Anfang des Endteils und

verbinde Teillisten
• Falls x größer als das letzte Element der Liste, ist x

das neue Ende der Liste.

32

Einfügen in geordnete Liste II

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

Präzisierung des Algorithmus
Folgende Fälle sind zu unterscheiden:

► kopf == null
► Einen Sonderfall bildet die Situation, dass die Liste leer

ist, also noch kein Element enthält.
► Es muss ein erstes Element angelegt werden, das

sicherlich eine geordnete, einelementige Liste bildet.

► kopf != null:
► Wir definieren eine private Methode Positioniere,

die als Parameter den einzuordnenden Wert und eine
Referenz auf den Anfang einer Teilliste übergeben
bekommt.

► Als Ergebnis gibt Positioniere eine Referenz
auf Element zurück, die auf die Teilliste verweist, in
die x einsortiert ist.

33

Einfügen in geordnete Liste III

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

► Sei anfang die an Positioniere übergebene Teilliste
und gelte
► x < anfang.wert:

• Erzeuge ein neues Element und füge es am Anfang
der bei anfang beginnenden Teilliste ein.

► x > anfang.wert:
• Füge x in die mit anfang.weiter beginnende

Restliste ein, indem hierfür Positioniere mit
den entsprechenden Parametern erneut aufgerufen
wird.

34

Einfügen in geordnete Liste IV

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

35

Einordnen mit Hilfe von Positioniere

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

class Liste {
 ...

 public void OrdneEin(int i) {
 kopf = Positioniere(kopf, i);
 }

 private Element Positioniere(Element einElement, int i) {

 if (einElement == null)
 einElement = new Element(i);

 else {
 if (i < einElement.HoleWert()) {
 einElement = new Element(i, einElement);
 }

 if (i > einElement.HoleWert()) {
 einElement.SetzeWeiter(
 Positioniere(einElement.HoleWeiter(), i));
 }
 }

 return einElement;
 }

Dr. Lars Hildebrand – EINI LogWing / WiMa

► In vielen Anwendungen, die auf dynamischen
Datenstrukturen basieren, besteht die Notwendigkeit,
alle Elemente der Struktur genau einmal zu besuchen.

► Dies gilt für Listen wie für andere dynamische
Strukturen.

► Dieses möglichst nur einmalige Besuchen aller
Elemente nennt man Durchlaufen einer Struktur.

► Anwendungsbeispiele: Prüfen auf Vorhandensein,
Einsortieren, aber auch Ausgabe

36

Durchlaufen einer Struktur

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

37

Durchlaufen einer Liste I

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

class Liste {

 ...

 public void ZeigeListe() {
 Element aktElement = this.kopf;
 while (aktElement != null) {
 System.out.println(aktElement.HoleWert());
 aktElement = aktElement.HoleWeiter();
 }
 }

 public void ZeigeListeRekursiv() {
 ZeigeListeRekursiv(kopf);
 }

 private void ZeigeListeRekursiv(Element aktElement){
 if (aktElement!= null) {
 System.out.println(aktElement.HoleWert());
 ZeigeListeRekursiv(aktElement.HoleWeiter());
 }
 }
}

Dr. Lars Hildebrand – EINI LogWing / WiMa

► Durchlauf einer Liste in umgekehrter Reihenfolge
► Referenz fuss verweist zwar auf das letzte Element

einer Liste, kann jedoch nicht von dort zum vorletzten
Element gelangen.

► Für eine umgekehrte Ausgabe müssen alle
Listenelemente gemerkt werden, während die Liste vom
Anfang zum Ende durchläuft.

► Erst nach einmaligem Durchlaufen kann vom letzten bis
zum ersten Element gedruckt werden.

► Großer Aufwand?

38

Durchlaufen einer Liste II

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

Einsatz der rekursiven Variante
► analog zu ZeigeListeRekursiv()
► aber: rekursiver Aufruf und Ausgabe vertauscht

public void ZeigeListeUmgekehrt() {
 ZeigeListeUmgekehrt(kopf);
}

private void ZeigeListeUmgekehrt(Element aktElement) {
 if (aktElement!= null) {
 ZeigeListeUmgekehrt(aktElement.HoleWeiter());
 System.out.println(aktElement.HoleWert());
 }
}

private void ZeigeListeRekursiv(Element aktElement){
 if (aktElement!= null) {
 System.out.println(aktElement.HoleWert());
 ZeigeListeRekursiv(aktElement.HoleWeiter());
 }
}

39

Durchlaufen einer Liste III

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

public class TestListe {
 public static void main(String[] args) {

 Liste meineListe = new Liste(42);
 meineListe.OrdneEin(7);
 meineListe.OrdneEin(73);
 meineListe.OrdneEin(1);
 meineListe.OrdneEin(50);

 meineListe.ZeigeListeRekursiv();
 meineListe.ZeigeListeUmgekehrt();
}}

40

Etwas testen…

> run TestListe
1
7
42
50
73
73
50
42
7
1

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

► Wird der Durchlauf vom Ende einer Liste zu ihrem Anfang
häufig benötigt, dann ist die lineare Verkettung von vorne
nach hinten nicht der ideale Navigationspfad.

► Besser wäre es dann, auch eine Rückwärtsverkettung zu
haben.

► Aufgrund dieser Überlegung kommt man zur doppelt
verketteten Liste.

► Die lokale Klasse Element enthält eine zweite Referenz
voran, die genau entgegengesetzt zu weiter gerichtet
ist und somit für jedes Element innerhalb der Liste auf
seinen direkten Vorgänger verweist.

41

Doppelt verkettete Listen

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

► Dynamische Datenstrukturen
► können zur Laufzeit wachsen und schrumpfen.
► werden durch Nutzungsinformation und

Verwaltungsinformation realisiert.
► Verwaltungsinformation ist eine Referenz auf eigene

Klasse.

► Listen
► Einfache Listen
► Einfache Listen mit Referenz auf das letzte Element
► Sortierte Listen
► Doppelt verkettete Listen

► Wie geht es weiter?

42

Zusammenfassung

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

EINI LogWing /
WiMa

Kapitel 8
Dynamische
Datenstrukturen

Dr. Lars Hildebrand – EINI LogWing / WiMa

Artikel im EINI-Wiki:

→ Liste

Dr. Lars Hildebrand – EINI LogWing / WiMa 43

Listen

Kapitel 8
Dynamische
Datenstrukturen

In diesem Kapitel:
• Prolog
• Grundlagen
• Listen

http://129.217.47.110/index.php/Hauptseite

44

Übersicht

Vielen Dank für Ihre Aufmerksamkeit!

Nächste Termine

► Nächste Vorlesung – WiMa 29.1.2026, 08:15
► Nächste Vorlesung – LogWing 30.1.2026, 08:15

Dr. Lars Hildebrand – EINI LogWing / WiMa

	EINI �LogWing/WiMa/MP��Einführung in die Informatik für Naturwissenschaftler und Ingenieure��Vorlesung 2 SWS WS 25/26�
	Thema
	Übersicht
	Grundlagen dynamischer Datenstrukturen I
	Grundlagen dynamischer Datenstrukturen II
	Grundlagen dynamischer Datenstrukturen III
	Grundlagen dynamischer Datenstrukturen IV
	Grundlagen dynamischer Datenstrukturen V
	Dynamische Datenstrukturen – Grundlagen
	Listen
	Bestandteile einer Liste – Element
	Bestandteile einer Liste
	Konstruktion von Listen
	Schema der Klasse Lineare Liste
	Funktionalität einer Liste
	Klasse Element: Vollständige Implementierung I
	Klasse Element: Vollständige Implementierung II
	An den Anfang der Liste einfügen I
	An den Anfang der Liste einfügen II
	Ausgeben der Liste I
	Ausgeben der Liste II
	An das Ende der Liste anfügen I
	An das Ende der Liste anfügen II
	Etwas testen…
	Effizienz der Klasse Lineare Liste
	Klasse EffizienteListe I
	Klasse EffizienteListe II
	Klasse EffizienteListe III
	Klasse EffizienteListe IV
	Klasse EffizienteListe V
	Einfügen in geordnete Liste I
	Einfügen in geordnete Liste II
	Einfügen in geordnete Liste III
	Einfügen in geordnete Liste IV
	Einordnen mit Hilfe von Positioniere
	Durchlaufen einer Struktur
	Durchlaufen einer Liste I
	Durchlaufen einer Liste II
	Durchlaufen einer Liste III
	Etwas testen…
	Doppelt verkettete Listen
	Zusammenfassung
	Listen
	Übersicht

