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ABSTRACT

In combinatory logic one usually assumes a fixed set of basic combinators (axiom schemes),
usually K and S. In this setting the set of provable formulas (inhabited types) is PspPACE-
complete in simple types and undecidable in intersection types. When arbitrary sets of axiom
schemes are considered, the inhabitation problem is undecidable even in simple types (this is
known as Linial-Post theorem).

Bounded combinatory logic (Bcry) arises from combinatory logic by imposing the bound
k on the depth of types (formulae) which may be substituted for type variables in axiom
schemes. We consider the inhabitation (provability) problem for BcLy: Given an arbitrary
set of typed combinators and a type T, is there a combinatory term of type T in k-bounded
combinatory logic?

Our main result is that the problem is (k 4 2)-ExpTIME complete for BcL; with intersection
types, for every fixed k (and hence non-elementary when k is a parameter). We also show that
the problem is ExpTIME-complete for simple types, for all k.

Theoretically, our results give new insight into the expressive power of intersection types.
From an application perspective, our results are useful as a foundation for composition syn-
thesis based on combinatory logic.
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INTRODUCTION

In standard combinatory logic (see, e.g., [5]), one usually considers a fixed set of typed com-
binators (a combinatory basis), for example S : (¢ — (B — 7)) = (« — B) = (« — ) and
K:a — B — a. Under the propositions-as-types correspondence, combinator types corre-
spond to axiom schemes of propositional logic in a Hilbert-style proof system, with modus
ponens and a rule of axiom scheme instantiation as the principles of deduction. The schematic
interpretation of axioms corresponds to implicit polymorphism of combinator types, where
type variables («, B,7,...) may be instantiated with arbitrary types. Thus, the combinator K
has types T — ¢ — 7 for all T and o.

In this paper we consider bounded combinatory logic (BCLy), which arises from combinatory logic
by imposing the bound k on the depth of types (formulae) which may be substituted for type
variables in axiom schemes. For example, in Bcry the type scheme of the combinator K can
only be instantiated to T — ¢ — 7 for T and ¢ with depth < k. By imposing the bound,
inhabitation becomes decidable in cases where the unbounded problem is undecidable.

Our interest in bounded combinatory logic is motivated both by theoretical concerns and
from the standpoint of applications. Theoretically, we are interested in the complexity and
expressive power of the system, depending on the bound. From an application perspective,
we consider bounded combinatory logic as a foundation for type-based synthesis, following
[9]. In the present paper we generalize from the monomorphic case of [9] to arbitrary bounded
levels of polymorphism.

Bounded combinatory logic. In contrast to standard combinatory logic (see, e.g., [5]), we bound
the depth of types used to instantiate types of combinators, but rather than considering a fixed
base of combinators (for example, the base S, K) as is usual in combinatory logic, we consider
the inhabitation problem relativized to an arbitrary set I' of typed combinators, given as part of
the input:

Given I' and 7, is there an applicative term e such that T’ -y e : T?

The relativized problem is generally much harder than the fixed-base problem. For exam-
ple, inhabitation in standard (unbounded) simple-typed SK-calculus is PspAce-complete [12],
whereas the unbounded relativized problem is undecidable, even in simple types. We recall that
the latter type of problem has been considered since 1948 when Linial and Post [7] initiated
a line of work studying decision problems for arbitrary propositional axiom systems (often
referred to as partial propositional calculi, abbreviated PPC) answering a question posed by
Tarski in 1946. They proved (among other things) that there exists a PPC with an unsolvable de-
cision problem (Linial-Post theorem). Since then, many results have been obtained for various
PPC, e.g., Gladstone [3] and Singletary [10] showed that every r.e. degree can be represented



by a PPC. In 1974, Singletary [11] showed that the implicational fragment of PPC can repre-
sent every r.e. many-one degree. The problem considered there is identical to the unbounded
relativized inhabitation problem for simple types.

Our main result is that the relativized inhabitation problems for BcL; with intersection types
form an infinite hierarchy, being (k + 2)-ExpTIME-complete for each fixed k. A non-elementary
lower bound follows for the problem where k is taken as an input parameter. Our lower
bound techniques, which may be of independent interest, expose new aspects of the expressive
power of intersection types. We generically simulate alternating Turing machines operating in
expy.1(1n)-bounded space, where exp,, denotes the iterated exponential function. For each
k, we devise a numeral representation with intersection types in BcLy for numbers between
0 and exp; (1) — 1, and we use this system to achieve a succinct representation (exploiting
k-bounded polymorphism) of the Turing tape. In contrast, we show that the k-bounded inhab-
itation problem is ExpTIME-complete for simple types, for all k.

A foundation for composition synthesis With this paper we continue the work begun in [9] on
investigating limited systems of combinatory logic as a foundation for type-based synthesis
(automatic synthesis of function compositions from a repository of typed functions). In [9], we
proved the monomorphic inhabitation problem ExrriMEe-complete and devised inhabitation
algorithms that we have since implemented and applied to synthesis. In our applications,
the set I' models a repository, the goal type 7 is considered as a specification of a desired
composition, and the inhabitation algorithm automatically constructs solutions (if any) to the
synthesis problem. The relativized inhabitation problem is the natural basis for applications
in synthesis, where I' models a changing repository of functions. As argued in [9], intersection
types play a key role in these applications, since they can be used to specify deep semantic
properties.

A limited degree of polymorphism has been found to be very useful in applications, since it
allows for succinct specifications. In particular, the lowest level (BcLy) of the hierarchy studied
here turns out to be already of major importance. At this level, we are able to instantiate
type variables with atoms or intersections of such. Since type structure can be atomized by
introducing type names (atoms) for structured types through definitions, many interesting
problems can be specified and solved in BcLg.

As a simple example of succinctness, consider that we can represent any finite function
f+ A — B as an intersection type Ty = (;ca 4 — f(a), where elements of A and B are type
constants. Suppose we have combinators F; : Tf, in I', and we want to synthesize compositions
of such functions represented as types (in some of our applications they could, for example,
be refinement types [2]). We might want to introduce composition combinators of arbitary
arity, say ¢ : (A — A)" — (A — A). In the monomorphic system, a function table for g
would be exponentially large in n. In BCLp, we can represent ¢ with the single declaration
G: (g = 1) = (g = ap) = -+ = (a1 = ay) = (a9 — a,) in I'. Through level-0
polymorphism, the action of g is thereby fully specified.



Interestingly, by the present results, the complexity of BcLg is 2-ExrTIME complete and hence
comparable in complexity to other known synthesis frameworks (such as, e.g., variants of tem-
poral logic and of propositional dynamic logic). It is also interesting to observe that the lower
bound techniques of the present paper appear to reveal a methodology by which inhabitation
of intersection types can be used to express a form of logic programming at the type level,
which appears to be useful in synthesis. Space limitations preclude us from going into further

details here, and we report on our experience in synthesis in a separate paper.






PRELIMINARIES

Types: Type expressions, ranged over by T, ¢ etc., are defined by
T us=a|T—=7T|TNT

where a,b,c, ... range over atoms comprising of type constants, drawn from a finite set A in-
cluding the constant w, and type variables, drawn from a disjoint denumerable set V ranged
over by a, B etc. We let T denote the set of all types.

As usual, types are taken modulo commutativity (t No = ¢ N 7), associativity ((tN o) N
p = 7N (cNp)), and idempotency (TN T = T). A type environment T is a finite set of type
assumptions of the form x : 7. We let Dn(T') and Rn(I') denote the domain and range of I'. Let
Var(t), Cnst(t) and At(T) denote, respectively, the set of variables, the set of constants and
the set of atoms occurring in 7, and we extend the definitions to environments, written Var(T),
Cnst(T') and At(T) in the standard way.

A type T N0 is said to have T and ¢ as components. For an intersection of several components
we sometimes write (}'_; T; or ;) T or {7 | i € I}, where the empty intersection is identified
with w.

Subtyping: Subtyping < is the least preorder (reflexive and transitive relation) on T, with

c<w, w<w—w, cNt<o, ocNt<Tt, oc<oNo;
(c—=1)N(c—=p)<oc—T1Np;
Ifo<odandt <7t thencNnt<oNtvando > 1<0— 7.

We identify o and T when ¢ < 7 and T < ¢. The following distributivity properties follow
from the axioms of subtyping:

(c—=T1)N(c—p)=0—(tNp) (c—1)N( =)< (end) = (zNnT)

Paths: If T =1 — --- = T — 0, then we write 0 = tgt, (1) and 7; = arg;(7), for i < m. If

arg;(t) = p for all i we also write T = p™ — 0. A type of the form 7y — --- — T, — a, where
a # w is an atom,” is called a path of length m. A type 7 is organized if it is a (possibly empty)
intersection of paths (those are called paths in T). Note that premises in an organized type do
not have to be organized, i.e., organized is not necessarily normalized [4].

Lemma 1 Every type T is equal to an organized type T, computable in polynomial time.

1 Observethat gy — --- — T — w = w.



Proof: Define s = a if ais an atom and let TNo =TN7. If ¢ = Ny 0; then take T — 07 =
Nier(T = 7). O

Sets of paths: For an organized type o, we let IP,,(0) denote the set of all paths in ¢ of length m
or more. We extend the definition to arbitrary T by implicitly organizing 7, i.e., we write IP,,,(T)
as a shorthand for P, (7).

Type size: The size of a type 7, denoted ||, is defined to be the number of nodes in the syntax
tree of T (this is identical to the textual size of 7). The path length of a type T is denoted |||
and is defined to be the maximal length of a path in .
Substitutions: A substitution is a function 5 : V — T such that S is the identity everywhere
but on a finite subset of V. For a substitution S, we define the support of S, written Supp(S),
as Supp(S) = {a € V | o # S(a)}. We may write S : V — T when V is a finite subset of V
with Supp(S) C V. We write At(S) to denote the set {A#(S(a)) | & € Supp(S)}. A substitution
S is tacitly lifted to a function on types, S : T — T, by homomorphic extension. Finally, a
constant-function is a map ¢ : A — A such that ¢(w) = w. Constant-functions are tacitly lifted
to functions ¢ : T — T.

The following property, probably first stated in [1], is often called beta-soundness. Note that
the converse is trivially true.

Lemma 2 Let aj, for j € ], be atoms.
1. If Nier(0i = ) NNjeyaj < a then a = aj, for some j € J.
2. If Nier(0i = ) NNjej a; < 0 — T, where ¢ — T # w, then the set
{ieI|o <o} isnonempty and {7 |0 <0;} <.

Lemma 3 Let Nic;T; < 1 — -+ — Bm — p, where T; are paths. Then there is an i € I such that
T=01 = =y — pand B; < aj, forall j < m.

Proof: Induction with respect to m, using the beta soundness (Lemma 2). O

Lemma 4 Let S be a substitution and let ¢ be a constant-function. Then o < T implies S(o) < S(7)
and c(0) < ¢(7).

Proof: Induction with respect to the definition of o < . O

Alternating Turing Machines

An alternating Turing machine is a tuple M = (X, Q, 4o, qa, g, A). The set of states Q = Q3 W Qy
is partitioned into a set Qg of existential states and a set Qy of universal states. There is an
initial state g0 € Q, an accepting state g, € Qy, and a rejecting state g, € Q3. We take

10



Y = {0,1,.}, where , is the blank symbol (used to initialize the tape but not written by the
machine). The transition relation A satisfies

ACEXQXXExQx{LR}

where h € {L,R} are the moves of the machine head (left and right). For b € ¥ and g € Q, we
write A(b,q) = {(c,p,h) | (b,q,c,p,h) € A}. We assume A(b,q,) = A(b,q,) = D, forall b € %,
and A(b,q) # @ for g € Q\ {qa,qr}- A configuration of M is a word wqw’ with g € Q and
w,w’ € ¥*. The successor relation C = C’ on configurations is defined as usual [8], according
to A. We classify a configuration wqw’ as existential, universal, accepting etc., according to 4. The
notion of eventually accepting configuration is defined by induction:?

® An accepting configuration is eventually accepting.
e If C is existential and some successor of C is eventually accepting then so is C.

¢ If C is universal and all successors of C are eventually accepting then so is C.

2 Formally we define the set of all eventually accepting configurations as the smallest set satisfying the appropriate
closure conditions.

11






BOUNDED COMBINATORY LOGIC

Definition 5 (Levels) Given a type T we define the level of T, written £(T), as follows.

l(a) = 0, forac AUV;
Ut —0) = 1+max{l(1),(0)};
Ny m) = max{l()|i=1,...,n}.

The level of a substitution S, written £(S), is defined as
£(S) = max{¢(S(w)) |« € V}.

Alevel-k type is a type T with £(T) < k, and a level-k substitution is a substitution S with £(S) < k.
For k > 0, we let Ty denote the set of all level-k types. For a subset A of atomic types, we let Ty(A)
denote the set of level-k types with atoms (leaves) in the set A. O

Notice that the level of a type is independent from the width (number of arguments) of inter-
sections. Notice also that ¢(S) is completely determined by the restriction of S to Supp(S): if
Supp(S) = @, then ((S) = 0, and if Supp(S) # @, then ¢(S) = max{{(S(x)) | « € Supp(S)}.
Finally, we have ¢(So S’) < £(S) + ¢(S').
Type assignment: For each k > 0 the system BcLy(—,N) (k-bounded combinatory logic with in-
tersection types) is defined by the type assigment rules shown in Figure 3.1. In rule (var), the
condition ¢(S) < k is understood as a side condition to the axiom T, x : T b x : S(7). The
restriction to simple types (types without N) is called BcLy(—) and is defined by the rules (var),
(—E) and (<), where T and 7’ range over simple types, by dropping all axioms from the sub-
typing relation that involve N, and by considering only substitutions S mapping type variables
to simple types. Recall from [9] finite combinatory logic with intersection types, denoted Fcr. This
system can be presented as the restriction of BcLy in which the (var) rule is simplified to the
axiomI,x:7Fx:T.

In this paper we are addressing the following relativized inhabitation problem:

Given I' and 7, is there an applicative term e such that I' - e : T7?

13



[£(S) < K]
[,x:7hkpx:S(7)

IT'bre:t— 1 Thee:t

(var) Tkp(ee): T

(—E)

Tkpe:t <7
rl—kEZT’

Fl—ke:rl rl—kEITz
tFre:mNo,

(ND)

(<)

Figure 3.1: Bounded combinatory logic BcLg

Algorithm

In this section we formulate an algorithm to decide the relativized inhabitation problem
for BcL, and derive the (k + 2)-ExPTIME upper bound.

Lemma 6 Let I' & e : T and let S be a level-m substitution. Then there exists a derivation of
I gy e S(T) of the same depth.

Proof: Induction with respect to the derivation of I' - e : 7. In case the derivation is by rule
(var), with T, x : ¢ ¢ x : S1(¢0) and S1(0) = T, we have the derivation: I",x : ¢ b, x :
S o Si(c). This is evidently of the same depth as the original derivation. The remaining cases
follow easily by induction. O

Lemma 7 Let I' by e : T and let ¢ be a constant-function such that c is the identity on Cnst(T'). Then
there exists a derivation of T by e : ¢(T) of the same depth.

Proof: Induction with respect to the derivation of I - e : 7. In case the derivation is by rule
(var), assume I/, x : ¢ by x : S(0) with S(0) = 7. Since ¢ is the identity on Cnst(T), it follows
that ¢ is the identity on Cnst(c). Therefore, the map c o S acts as a type substitution on ¢, and
consequently we have the derivation: I, x : ¢ by x : ¢ 0 S(0), proving the claim.

In case the derivation is by rule (<), we use Lemma 4 and apply the induction hypothesis.
The remaining cases follow easily by induction. O

Let At (T, ) = AHT) UAt(t) U{w}. The following proposition shows that, in order to solve
an inhabitation question I' ;. ? : T, one needs only consider rule (var) restricted to substitutions
of the form S : Var(T') — Ty (At, (T, 7)).

We say that a substitution S occurs in a derivation D, whenever S is used in an application
of rule (var) in D.

14




Proposition 8 If I k- e : T, then there exists a derivation D of I & e : T such that every substitution
S occurring in D satisfies the conditions

1. Supp(S) C Var(T);
2. At(S) C Aty(T, 1).

Proof: By induction with respect to the depth d of the derivation of I' -y e : 7.

Assume d = 1. We must have I, x : ¢ k¢ x : S(0) with S(o) = 7, by rule (var). We can
restrict S such that Supp(S) C Var(c), and hence also Supp(S) C Var(T'). Because S(0) = T, we
then also have At(S) C At(T).

Assume d > 1. Suppose we have a derivation

Dy D,
Thre:o—t T'ke o

Fhpee: T

by rule (—E), where d; < d is the depth of the subderivation D; (i = 1,2). Let S be the
substitution with Supp(S) C Var(c) such that S is the identity on Var(t) and all variables in
Var(o) \ Var(t) are mapped to w. Using Lemma 6 we have I' i e : S(0) — Tand T F ¢’ : S(0)
by derivations of depth d;, respectively. By definition of S, we have

Var(S(o)) C Var(1) (3.1)

Let ¢ be the constant-function such that c is the identity on Cnst(I') U Cnst(T) and mapping all
other constants to w. By Lemma 7, we have I' ¢ e : ¢(S(0)) = Tand I Fy ¢ : ¢(S(0)) by
derivations of depth d; < d, respectively. By definition of ¢ together with (3.1), we have

Aty (T,c(S(0)) C Atw(T, 1) (3-2)

Applying the induction hypothesis, we can conclude that there exist derivations D} and D)
such that we have

Dj Dy
IFre:c(S(o)) =1 IHre :ce(S(0))
Three: T

with every substitution in S occurring in D} or D} satisfying Supp(S) C Var(T') and At(S) C
At (T,¢(S(0)) — 7). By (3.2) we have

Aty (T,¢(S(0)) = 1) = Atw(T, T)

thereby proving the claim.

15



Suppose we have a derivation by rule (<) of the form

Dy
kre:o c<T
Fl—ke‘:T

where D; is of depth d; < d. We define substitution S and constant-function c as in the
previous case and apply Lemma 6 and Lemma 7 to obtain a derivation I' F e : ¢(S(0)) of
depth d; < d and, by Lemma 4, ¢(S(c)) < 7. Applying induction hypothesis, we have a
derivation

Dy
T'kre:c(S(0)) c(S(o)) <t
Thre:t

satisfying the claim.
The remaining case of rule (NI) follows easily from the induction hypothesis. O

The following lemma shows that inhabitation in BcLi(—,N) is equivalent to inhabitation in
FCL modulo expansion of the type environment. Given a number k, an environment I' and
a type T, define for each x € Dm(T') the set of substitutions

ST = Var(T(x)) — Tr(Atw(T, 7))
and define the environment I'("%) with domain Dm(T) so that, for x € Dm(T),

™0 (x) = N{S(T(x)) | S € Sf(r’f’k)}

Lemma 9 (Expansion) One has T e : T in Bcry(—,N) iff T e T in FeL.

Proof: If I' ¢ ¢ : T by a derivation D, consider each application of rule (var) of the form
I",x : 0 by x: S(0), occurring in D. By Proposition 8, we can assume that S is a member of

the set SJ(CF’T’H. Hence, one has T("¥) |- x : §(¢) in Fcr, by an application of rule (var), followed
by an application of rule (<). It follows that T("X) - ¢ : T holds in FcL.
For the implication in the other direction, consider that one has in BcLi(—,N)

Thx: N{S(T(x)) | S € STy

for all x € Dm(T'), by multiple applications of rule (var), followed by rule (NI). O

The following lemma was shown in [g9] using a different representation of paths. Here it is
formulated and proved in terms of the notion of paths defined in the present paper.

16



Lemma 10 (Path Lemma for rcr [9]) The following are equivalent conditions:
1. T'kFxep...ep: T;
2. There exists a set P of paths in P, (T'(x)) such that
a) Npeptgt, (1) < T;
b) Tt ei:Nyeparg;(m), foralli < m.

Proof: (=) Induction with respect to the derivation of T' + (xep...en) : T. We assume w.l.o.g.
that all types considered are organized (we can organize them according to Lemma 1).

If the last rule is (var) then m = 0 and I'(x) = 7. Since 7 is the intersection of its paths, we
can choose P = Py(7) with T = (;ep 7.

If the last rule of the derivation is (<), then the claim follows easily by induction hypothesis
and transitivity of <.

If the last rule is (NI), then T - (xey...ep) :pand T (xeg...ep) : o, with g N1, = 7. By
the induction hypothesis, there are subsets Py, P, of paths in P, (I'(x)) with T = ¢; : (zep, arg;(7)
and (Nyep tgt,(7) < 7, fori = 1,2 and j = 1,...,m. Let P = PyUP,. Then it fol-
lows by (M) that T' F ¢; : Nnecpargj(m), for j = 1...m, and by monotonicity of N that
Nrep t8t,,(m) < 11 N1y = 7T, as desired.

If the last rule of the derivation is (—E), then we have

I (xe;...ep1):7T —Tand T ey : T,
for some 7’. By the induction hypothesis there exists P,,_1 C P,,_1(T'(x)) such that
(I1) TFei:Nrep, , argj(n) forj=1...m—-1;
(12) Nrep,, , 8, 1(7) <7 =T
Let
Py = {m € Py_1 | tgt,,_1(7) = 0x — 0 for some oy, 0}, with T/ < o }.
For 7t € Py, write tgt, (7)) = 0z — 0. By (I2) and Lemma 2, we have P, # @ and
T < Nrep, O (33)
and
Nrepy 0n < T (3-4)

Since Py, C P,,_1(I(x)), we have by definition of P, that P, C P,(I(x)). Moreover, by
definition of P, we have

nner argm(rc) = ﬂner On (3.5)

17



and

Nrep, 18t (7T) = Nrep,, T (3-6)

Since I' - e, : T/, we have T = ey : Nzep, 18, (77) by rule (<), (3.3) and (3.5). And from (3.4)
and (3.6) we get (N ¢p, t8t,,(71) < 7. It follows that we can choose P = Py,.

(<) Since T'(x) is the intersection of its paths, we have
I'(x) <arg)(m) = - — arg, () — tgt, (),

for € P, (T'(x)). The claim now follows from the assumption together with obvious applica-
tions of the type rules. O

Lemma 11 (Path Lemma for BcLi(—, N)) The following are equivalent conditions:
1. T xer...em:T;
2. There exists a set P of paths in P,,(N{S(I'(x)) | S € S,(CF’T’k)}) such that

D) Nreptghy(7) < T
b) Thkyei:Nyeparg;(m), foralli < m.

Proof: Immediate, by Lemma 9 and Lemma 10. O

The following corollary will be used later.

Corollary 12 Let T'(x) = ﬂjeI(T{ ST, o). If T & xey...ey : T then there are
substitutions Sy, for ¢ € L, and numbers j, such that

1. Nper Se(07) < 7
2. Thpei: Ner Se(T)).
(T,tk)

Proof: Let the set of paths P be chosen according to Lemma 11. Write Sy =54,...,5.
Each path 7t € P is of the form

T = S,g('f{‘) oo Sy(T) = 7

where 71/ is a path in S;(c7t), for some £ (1 < £ < 7).
Let L be the set of all £ (1 < £ < r) such that for some path 7w € P

mT= S,g('f{‘) — Sg(T%) — 710

Then we have M, cparg;(71) = Nper Sg(fj”), and since S;(c’*) is just the intersection of all its
paths, we also have S;(c7¢) < 7, hence (e, Se(07) < (yer 7p. From Lemma 11 we have
T'Frei: Neer Sg(Ti”) and Nyep, 7y < 7T, from which the claim follows. O

Let exp, be the iterated exponential function, given by exp,(n) = n, exp;;(n) = 2expi (1),
The lemma below can be shown by an elementary counting argument.
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Lemma 13 For every k, there is a polynomial p(n) such that the number of level-k types over n atoms
is at most expy_,(p(n)), and the size of such types is at most exp,(p(n)). The number and size of
simple level-k types (for a fixed k) is respectively bounded by a polynomial and a constant.

Proof: For general level-k types, we prove by induction with respect to k that the number
of level-k types over n atoms can be bounded by exp, ;(p(n)), each of size bounded by
exp;(p(n)). Indeed, at level 0 we have subsets of n possible atoms, yielding 2" level-0 types
each of size bounded by 7, and at level k + 1 we can form intersections (subsets) of types
of the form 7l — oK, where T and ¥l are level-k types. Hence, assuming inductively
expy1(q(n)) level-k types for a polynomial q(n), the number of level-(k + 1) types is bounded

by 2(ePe11(4(m))* \which can in turn be bounded by exp, ,(r(n)) for a polynomial 7(n). More-
over, assuming inductively that the size of a level-k type is bounded by exp,(q(1)), intersec-
tions of at most exp;_;(q(n)) such types are of size bounded by exp,(q(n)) x exp,,(q(n)),
which in turn can be bounded by exp,_;(r(n)).

For simple types bounded by depth k, the claim follows easily by an inductive argument
with respect to k. O

Theorem 14 Inhabitation in BcLi(—, N) is in (k + 2)-EXPTIME.

Proof: The alternating Turing machine shown in Figure 3.2 is a decision procedure for inhabi-
tation in BcLx(—, N) for each k > 0, being a direct alternating implementation of Lemma 11. In
Figure 3.2 we use shorthand notation for instruction sequences starting from existential states
(CHOOSE. . .) and instruction sequences starting from universal states (FORALL(i = 1...k)S;).
A command of the form cHOOSE x € S branches from an existential state to successor states
in which x gets assigned distinct elements of S. A command of the form FORALL(i =1...k) S;
branches from a universal state to successor states from which each instruction sequence S; is
executed.

The machine operates in bounded space, because, for all I', 7,k x, the set S,((F’T’k) is fi-

S}EF,T,k)

nite. More precisely, it follows from Lemma 13 that the size of can be bounded by

expy_1(p(n)). For consider that we have, for some polynomial ()

[ 87 =] Te(Ato (T, 1)) M0 < (expyy (7))
which shows that | S,(CF’T’k) | is bounded by exp;_ ;(p(n)) for a polynomial p(n)." Moreover,
we have by Lemma 13 that the size of each level-k type can be bounded by exp,(p(n)), for
some polynomial p(n). It follows that the types ¢’ (Figure 3.2, line 2) can be written down
in space bounded by exp,_;(p(n)), and hence the algorithm is bounded in alternating space
exp,1(p(n)). By the identity Aspace(f(n)) = Drive(29(/ (")) inhabitation is therefore in (k +
2)-EXPTIME. O

19



Input : T,7,k

loop :

CHOOSE (x:0) € T;

o :=N{S(0)|S € Sﬂ(frlle)};
caoose m € {0,...,||c'|| };
CHOOSE P C Py, (0”);

B~ W N =

IF (Nrep t8t,, (1) < T) THEN
IF (m = 0) THEN ACCEPT;
ELSE

FORALL(i =1...m)
T 1= (eparg;(7);

10 GOTO loop;

O 0 N O Q1

Figure 3.2: Alternating Turing machine deciding inhabitation in Bcry

1 It is worth noting that the number of substitutions at level zero is exponential, even if there are only 2 atoms to
substitute for n variables, and that also holds with simple types. The exponential jumps at higher levels are due to
intersections.
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SIMPLE TYPES, BcrLi(—)

The upper bound for simple types is obtained as a special case of the analysis in Section 3.
Theorem 15 Inhabitation in BCLy(—) is in EXPTIME, for all k.

Proof: The proof uses the same argument as the proof of Theorem 14. The difference is that
now we only substitute simple types. Under this restriction, the machine of Figure 3.2 operates
in alternating polynomial space, because all types of the form S(c) are of linear size. O

Theorem 16 For every k > 0, the inhabitation problem for BcLy(—) is EXPTIME-complete.

Proof: The argument below is inspired by the ExpriMEe-hardness proof in [6]. Take an alternat-
ing TM, working in polynomial space p(n). We use fresh type atoms to represent every state
and tape symbol. A configuration C = wqw’, where w = by ...by,_1 and W' = by,. .. by is
encoded as a type
pc=bp = - —=by1—=>q9g—=by—--- =D
The initial configuration for input a5 ...a, is
Po=4qo — a1 —> =4y —>u—
with an appropriate number of blanks . We define an environment I so that, for all C,
C is eventually accepting ifandonlyif Il ¢¢. *)
We put into I' polymorphic patterns for accepting configurations:
061—>"'—>1me1—>qa—)am—>~~-—>0ép(n),
forallm =1,...,p(n) — 1, and types representing machine moves, as we now define.
Let A(b,q) = {(cj,pj,hj) | j=1,...,r}. The patterns
Cogm(@) =1 = -+ = a1 =9 b= ayq — = ()
represent all configurations where A(b,q) is applicable (and m is the head position). For
j=1,...,7, type ifp;mj(&) represents the j-th successor configuration. If ; = R then
Nogmj (&) = &1 = - = Q1 = € = Pj = Qg1 —> o —> &

p(n):

» p(n)~
otherwise W/ = L, and
Ijqu](t_)z) =01 —> - —> Wy—2 — pj — N1 — Cj — Kyl —> Dtp(n) .
The main property of the above types is as follows. If C = by ... byy—19bby+1 . . . by(,) then there
exists exactly one substitution S (mapping each «; to b;) such that S({ qu) = ¢c¢. In addition,
if Dy,..., Dy are all the successor configurations of C then we have S(#14,j) = ¢p;- Now ifgis
an existential state then I' contains all types of the form
Mogmj — équ ’
and for universal g there is only one type:

21



Mogm1 — =+ — Hogmr — gqu-
To prove the “only if” part of (*) we proceed by induction with respect to the definition of
acceptance. First observe that I' = ¢¢, for all accepting configurations. Then take a non-final
existential C = wqw’ with g at position m. If C is eventually accepting then it is so because one
of the successors of C, say D, is eventually accepting. The induction hypothesis applies to D,
thus T I- ¢p holds. Now, observe that ¢p = 14,,i[S] and @¢ = {pgm[S], for some b, j, and an
appropriate substitution S. It follows that I" - ¢¢.

If C is universal then all its successors Dy, ..., D, must be eventually accepting, whence
@Dy, ---, ¢p, are all derivable. The substitution S turns #psm1 — -+ = Nogmk — Gpgm iNto
¢p, — = @p, — ¢, s0 we can derive ¢c.

For the “if” part, we use induction with respect to proofs. The base case is only possible
when C is accepting. Otherwise the only way to derive I' - ¢¢, for an existential C, is by using
one of the formulas #4,,j — Cpgm, s0 for some S we must have T = #,,,i[S] and {pg [S] = @
Hence 77p,,,j[S] represents a possible next configuration, and we can use induction.

In the universal case, to derive ¢¢ we must use the type #pgm1 — =+ = Nogmk —> Cpgm ,» and
a substitution S such that T' = 7p4,j[S], for all j, and {pgm[S] = @c. But then 17p0[S] = ¢p,,
where D; are the successors of C. By the induction hypothesis, all D; are eventually accepting,
and therefore so is C. U
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LOWER BOUND FOR INTERSECTION TYPES

In this section we fix a number K and an expy_ ; ()-space bounded alternating Turing machine
M. In what follows it is assumed that k < K, whenever level k is considered. The basic idea is
to represent a configuration of M by, essentially, a type of the form

X n)—1 .
ﬂl‘e:I())K+1( ) Ce”(ai/ q, <m>K1 <Z>K)/

where a; € X, 9 € Q,0 < m < expg_;(n) — 1. Each component Cell(a;, q, (m), (i) k) represents
one of the tape cells, where a; represents the symbol in the i-th cell, 4 represents the current
state, type (m)g represents the address (number) of the cell which is under the current ATM
head position, and (i)x represents the address of the cell itself. Notice that the types g and
(m)g are identical across all the components of the type (i.e., across all indexes 7). The adresses
(i) impose a numerical order on the cell representations, so that we can represent a tape
consisting of a sequence of cells. Moreover, we can use these addresses to compute the head
position of the ATM (moving left or right of the current cell address).

Since we need a representation which is polynomial bounded in the size of the ATM input,
we cannot represent such types explicitly in our reduction. In order to achieve a succinct (poly-
nomial sized) representation, we exploit polymorphism. The basic insight in the reduction is
to represent the large configuration types implicitly, as polymorphic types Cell(a, g, B,v), and
to arrange the environment I' coding the behavior of M in such a way that large expansions
(under polymorphic instantiation) of such types become forced into the explicit form shown.
As in the proof of Theorem 16, the basic strategy for coding the ATM behavior is to represent
a computation sequence C;C; - - - C;; by a sequence of forced inhabitation goals in reverse order
of implication, by (essentially) having the implications [C;;1] — [C;] in T such that asking for
inhabitation of [C;] forces the inhabitation of [C;;1] (letting [C] denote the type representing the
configuration C).

Predicates

The predicates we use are certain type patterns serving as “containers” for their arguments. The
idea is that a predicate like F(7,0) encodes a pair of types T and ¢ and a “flag” F in a unique
way. This is achieved by making sure that type F(7,0) is large enough to never be substituted
for a variable. In addition, T and ¢ are placed inside F(t,0) several times to avoid unwanted
subtyping.

Some auxiliary notation for the beginning. Write FI!l for F and FI"*1 for FI"/ — F. For
instance, F¥/ = ((F - F) - F) - F. Alsolet Q; = (T = 17) 5 T —= T.
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Let N > K be a fixed number. Type F(11, 72, 73, T1) (a predicate of four arguments) is defined
using a dedicated type constant F (the predicate identifier), as follows:
F(t,1,73,1) = ((FM — Qr) = Og) = Qg) = O
Predicates of fewer arguments are defined by repeating the last one, e.g. G(7,0) will stand for
G(t,0,0,0). In what follows, the word “predicate” may refer to any F(1y,..., ).
The level of F(ty,..., 1) is larger than K, and therefore types of the form F(ty,...,74) never
occur in the range of a substitution. Further properties are as follows:

Lemma 17 For all types T, o and all predicates ®; and P:
1. If Nier Qr, < Qg then T; = o, for some i.
2. If Nie; @i < O then & = b, for some i.
Proof: Use Lemma 2. Details omitted. O
In our construction we use the following forms of predicates (for k < K and j < n):
e Unary: Zerog(a), zi(a), mg(a), Maxg(a), Numg(a), nk(a), Num/(a), Bit(a), Tape/ (a).
e Binary: Succi(a, B), Diffy(a, B), dx(a, B), ni(a, B).
e Ternary: Re(a, B,7v), Lr(a, B, 7).
* Quaternary: Cell(a,B,7,9).
In addition to that we also have the following constants (for j < n):
* 0,101 0.

and special constants for all internal states and tape symbols of the machine.

Intersection type numerals

Fix a natural number n. Let B[n]| denote the union of n copies of B = {0,1}, written B[n] =
{01,...,0,} U{14,...,1,}. We let b range over B and we let b range over B[n|. The sets of
level-k numerals (k > 0), denoted N, are constructed from B[n] by induction:

o No={Nyb;|b; €{0;1;} fori=1...n}
* Ney1 = {Neen, (T = br) | br € {0,1}, for T € N}
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Clearly, the size of N is exp;;(n). The value of a numeral ¢ € N is denoted [c] and is
defined by induction with respect to k:

o k=0: [N, 6] =Y" [b;] x 211, with [0,] =0and [1;] =1
* k>0: [[mUGNk(T - bT)H = ZTENk bT X ZHT]]

For instance, if n = 4 then the value of 0 N1, N03N 14 is 24 8 = 10. And if n = 2 then the
value of ((01 ﬂOz) — 0) N ((01 N 12) — 1) N ((11 ﬂOZ) — 0) N ((11 N 12) — 1) is 10 as well.
It is easy to prove by induction that for o € N we have 0 < [o] < exp,,,(n) —1, and for

k > 0 we can write ¢ canonically as o = ﬂz%"(n)il(’q — b;), where [1;] =i and b; € B, and

with [o] = 0P g, o,
It is also straightforward to see that, for any x between 0 and exp;_ ;(1) — 1, there is exactly
one o € Ny with [¢] = x. We use the notation ¢ = (x).

The encoding

Our goal is to define a BCLk type environment I', representing the behavior of the machine M.
The environment I" consists of several groups of declarations, to handle predicates over numer-
als, the tape, and the transition function. Note that each type ¢ in I is an intersection which
has a component of the form (e” — e), for some m, and that all other components are arrows
of m arguments, ending with predicates of the same identifier F. We then say that ¢, and the
corresponding combinator, is m-ary, and that F is the target identifier of .

Lemma 18 If x ism-aryand I' g xeq...e, : ® then v = m.

Proof: If T kg xej...e; : ® then by Lemma 11 we have (), cptgt, (1) < e, for some set P of
paths in types of the form S(I'(x)). The only such path is " — e, whence m = r. O

Lemma 19 Let T by e: F(ty,...,7q) Ne, where F(Ty,...,Ty) is a predicate. Then e = xeq ...emp,
for some m-ary combinator x with target identifier F. More precisely, T'(x) has the form ¢ N ({1 —
-+ = Cm — F(p1,...,p4)), and there is a substitution S such that S(p;) = 7, fori =1,...,4, and
T FK [ S(Ci),fOI’ i=1,...,m

Proof: The term e must be of the form e = xey...e;,, where x is a combinator of some
arity m in I'. It follows from Lemma 18 that m = r, and from Corollary 12 we obtain that
NeerL PrNe < F(Ty,...,7a) N e, where ®; are predicates with the same target G. Since e is a
constant, we actually have ey @, < F(7y,..., 7). By Lemma 17, one of ®, must be equal to
F(7,...,), in particular F = G. Note that ® is obtained as S(tgt,, (¢)), for some component
¢ of I'(x), and this S is the substitution required by the lemma. O
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Numeral predicates

The declarations shown in Figure 5.1 and Figure 5.2 are included in I, for every k < K. To-
gether they specify the way numerals are handled at each level k. The predicates are defined
inductively with respect to k. Thus, in Figure 5.1 we define the base predicates for numerals
in Ny, whereas Figure 5.2 contains definitions for predicates at all higher levels k + 1. These
latter definitions may inductively refer to definitions at lower levels (for example, in Figure 5.2,
the declaration for the combinator Ny refers to the lower level predicate Zeroy).

Zy Zer00(01m02ﬂ"'ﬂon)ﬂo
M, : Maxo(11012ﬂ~~~ﬂln)ﬁo

No : [n?(a) — Numg(1y Nna)] N [n?(a) — Numg(0; Na)] N [e — e
n} : [n¥(a) = n?(Lana)]N[n®(a) = n?(02Na)] N e — e
o (0 e
Dy : [do(a,B) = Numg(a) — Numg(B) — Diffo(a, B)] N[e — e — e — e]
do : NZi(do(0;Na, 1;NB)Ndo(1;Na,0;NB))Ne
Sy [Num0(01 n tX) — Num0(11 ﬂlx) — SUCCO(Ol Na, 11N DCH N
[Num0(11 N0, N Dc) — Numg(0; N1 N D() — SUCCO(11 N0,Na,0;N1N 0&)] N
N

[Num0(11 NlN---N1,_1 ﬁ()n) —
Numo(0; N0 N---N0,_1N1y) —
SUCCO(ll Nl,N---N1,.1N0,,0,N0N---N0,_q ﬂln)} N
[0 — o — o]

Figure 5.1: Numeral predicates, level 0

Turing machine

Now we turn to the actual machine simulation. Declarations in Figure 5.3 are used to “create”
the initial configuration with input word a; ... a, and with further tape cells filled with blanks
up to length expy_ ; (1). Tape cells are identified by numbers from 0 to expy_ (1) — 1.

Before we define the core part of our coding, we introduce one more notational convention.
A multiple implication 77 — T — -+ — T, — T is sometimes written as (7q,...,Tn) — T.
We extend this style by using informal abbreviations for sequences of premises. For instance,
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Dy
dii1

Sk+1

Sk+1

!
Sk+1

: Bit(0) NBit(1) N

© [Numgyq(a) = zgyq (a) — Zerogyq ()] N[0 — o — o]
 fzea(®) = 2 (B — 0)Na)] 1 [o — o]

Doz (B 0)Ne

: [Numpyq(a) = mpq(a) = Maxg ()] N [e — o — o]
b Mg (a) = mr ((B— 1) Na)Nije — o]
omep (B 1)Ne

Bit(y) — net1 (B — v,&) — Zerog(B) = Numyey1 (B — ) Na)] N

— e — e e

it(¢) — Succk(B,6) = nki1(6 = &) = ng 1 (B— 7, (6 = ) Na)|N
—eo—>e—e]

it(e) = Succk(B,0) = Maxi(6) = ng1(B— 7,6 = €)|N

e e

i [dit1(a, B) = Numpiq (a) — Numyiq(B) — Diffiiq (a, B)] N

[0 >0 — 0 — 0]

Dd((y—= DN (y—=0)NB)Ndi1((6 = 0)Na, (6 =1)NB)Ne

Rit1(B &, 7) — Zerog(B) — Succkq((B— 0) N, (B — 1
Lit1(Ba, 7]) — Zerog(B) — Succry1((B— 1) Na, (B—0)Ny)|N
e e

Succk(B,6) = Lis1(6,,7) = L1 (B, (6 = 1) Nav, (6 = 0)Ny)] N
Succk(B,6) = Riy1(6,8,7) = Lisa (B, (6 = 0) N, (6 = 1) Ny)] N

(0,&,7) = Ria (B, (6 = 0) N, (6 = 0) N y)] N
Succ(B,6) = R (6,4, 7) = Riga (B, (6 = 1) Na, (6 = 1) Ny) N

— e — o]
Maxy (8) — Succ(B,6) — Ryyq1(B,6 — 0,6 — 0)] N
Max (8) — Succ(B,6) = Ry (B, 6 — 1,6 = 1)| N
Max (8) — Succk(B,6) — L1 (B,6 — 0,6 — 1) N
— e — o]

[

[

e

[ )
[ )
{Succk(‘B 53 — Riaq
[e

[

[

[

e

type 1 = ©» — 13 — 01 — 02 — 03 — T may be writtenas A — B — T, where A =

Figure 5.2: Numeral predicates, level k + 1

and B = (0'1, 0'2,0'3).

(Tll T2, T3)
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Init [Zerog (a) — Cell(ay, qo, &, &) N Tape!(a) — Tape] N[o — o — o
init [Zerog (7y) — Succk(a, B) — Tape! T1(B) N Cell(air1, g0, v, B) — Tape'(a)] N
[Zerog () — Succk(a, B) — Cell(y, g0, 6, €) — Cell(y, g0, 6, €)] N
[0 >0 — 00 (forall i < n)
init" : [Zerog(7y) — Succk(a, B) — Tape™(B) N Cell(y, 90, v, B) — Tape”(a)] N
[Zerog () — Succk(a, B) — Cell(y, qo, J, €) — Cell(y, g0, 6, €)] N
[0 >0 — 0 — e
finit [Maxg («) — @ — Tape” (a)] N
[Maxg (a) — Cell(n, qo, 6, €) — Cell(n, qo, 9, €)] N[e — & — o]

Figure 5.3: Initial configuration under construction

Given g and b, let A(b,q) = {(c;,pi,h;) | i = 1,...,7}. By V4% (5) and Ui (a,4,7) we
abbreviate triples of types used to represent the transition defined by (c;, pi, h;). The role
of V7% (§) is to encode the action at the presently scanned tape cell, while U7 (, 5, ) applies
to all other tape cells. Assume first that h; = L. Then we define:

quf(5) = (Succk(B,9), Diffg(g, ), Cell(ci, pi, B,9)),

Ut (a,6,7) = (Succk(B,6), Diffg(v,6), Cell(a, pi, B, 7).
If i; = R then the definition is altered as follows:

Vabi(§) = (Succk (9, B), Diffx(&,¢), Cell(c;, pi, B,9)),

U (a,8,v) = (Succk(é,B), Diffx(v,9), Cell(a, pi, B, 7))

Now, if g is an existential state then for every i < r there is a combinator

Step® : [V1(5) — Cell(b,q,6,6)] N
[Uqbi(a’ S, 7) — Cell(lX, q/(sr ’)/)] N
[03 — o]

For universal g, we declare one combinator Stequ:

Step” : V() — .- = VI"(5) — Cell(bq,6,6)] N
(U9 (&, 8,7) — - - — U9 (a,8,v) — Cell(a,q,6,7)] N
[03 — s e o]

Properties of the coding

We now collect the main properties of our coding. The first two lemmas state that our numeral
system works properly.
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Lemma 20 For every k < K there are terms Zeroy, Maxy, Numy, Diff, Succy, such that for all types
o and T:

1. Ifo = (0) then T by Zeroy : Zerog(o) N e
2. If o = (expy (1) — 1)k then T Fg Maxy, : Maxi(c)Ne.
3. If o € Ny then T Fg Numy : Numg(o)Ne.

4. If o, € Ny, and o] # [7] then T kg Diff, : Diffy(o,T)Ne.

5. Ifo,T € Ny, and [o] + 1 = 1] then T g Succy : Succk(o,T)Ne

Proof: Beginning with k = 0, we have Nung = No(n3(n3(... (n"}(n}))...))), Zerog = Z,,

Maxg = My, Diff; = DodoNumgNumyg, and Succo = SoNumgNumg. Take max = exp;  ,(n)
and for k > 0 define Numy 1 = Nk_HB((nk+1BSucck)m”x’2(nchBSucckMaxk))Zerok, Zerog, 1 =
Zj\Numy 1 (0% (2}.,1)), and Maxy 1 = My Numy1 (m} ! (mj, ;)). Now we can define
successor Succyq = Sg1((Sk1Succk)™ (s}, 1 MaxySuccy))Zerog, and the last term we need

Lemma 21 For every k < K and every e:
1. If T Fge:Zerog(o) Ne  then o= (0).
2. If Thge:Max(o)Ne  then o= (exp; ;(n) — 1)
3. If Thge:Numi(o)Ne  then o € Ni.
4. If Tk e: Diff(o,7)Ne then o,T € Ny, and [o] # [1].
5. If T kg e:Succe(o,T)Ne then o,T € Ny, and [o] +1 = [1].

Proof: The proof is by induction with respect to k, and we show the five claims in the order
of their numbers. Of the ten possible cases we consider I g e : Numg () N e as an example.
It follows from Lemma 19 that e = Ny je1e2e3, and 0 = S((B — ) Na) and we can derive
I'Fgep:Bit(S(y))Ne, T'kgex:nge 1 (S(B— 7),S(w))Ne, and T g e3 : Zerog1(S(B)) Ne,
for some S. Then S(B) = (0)x and S(7) is 0 or 1. We prove by induction that T' g ¢ :
ni11(, 7) implies ¢ = (i) — ¢' and T = N;5;(j)x — bj, for some i, and conclude that
o =j>0(j)x — bj, i-e., that ¢ is indeed a numeral. O

Let C = wquw' be a configuration of our machine M. Assume that w = by...b, 1 and
w =by...b (n)—1- That is, the address of the currently scanned tape cell is /1. We take the

T UeXPgy

following type to be the encoding of C:

expyq(n)—1

€] = () Cel(b,q, (WK (i)x)-
i=0

Now let Cp be the initial configuration for input a; ...a,. (Thus b; = a;,1, fori < n.)
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Lemma 22 The intersection Tape N o is inhabited in T iff so is [Co| N e.
Proof: Suppose that T e : [Co] Ne. If T; = init'ZerogSuccy, for i = 1,...,n, then
I' F InitZerog (Ty(Ta(- - - (T—1 (T} " (finitMaxg e))) - -+ ))) : TapeNee.

On the other hand, if T' - ¢ : TapeN e then e = xe;...ey,, where x is m-ary (Lemma 18).
Since I' - e : Tape, the only possibility is that e = Initeje;, where I' - e; : Zerog((0)k)
and T I e; : Tape! ({0)x) N Cell(ay, g0, (0)g, (0)x ). We prove by induction wrt r that e, =
Ty(Ta(--- (¢/)---)), where ¢ has type o N Tape’((r)) N N;<, Cell(b;, go, (0),(i)), and £ =
min{r +1,n}. For r = expy;(n) — 1, term ¢’ is of type o N Tape” ((r)x) N [Col. O

Lemma 23 A configuration C is eventually accepting iff T F [C] N e.

Proof: The “only if” part goes by induction with respect to the definition of acceptance. If C
is an accepting configuration (universal without successors) then we have a declaration

Step™? : Cell(b,q,,6,6) N Cell(a,qq,0,7) N o,

for appropriate b, whence T I Step”’ : [C]Ne. Let C = wqbw’ be existential, with g at
address t. If C — C', with C’ eventually accepting then, by the induction hypothesis, [C'] N
e is inhabited. Assume for example that C’ is obtained from C using a triple (c;, p;, h;) €
A(b,q), with h; = L. Then [C'] differs from [C] in that we have Cell(c;, p;, (t — 1), (t)) instead
of Cell(b,q,(t),(t)) and Cell(b;, p;, (t —1),(j)) instead of Cell(b;,q,(t),(j)), for all j # t.
It follows that T’ - Step?"Succ, Diff i €1 [C] Mo, where Succy and Diff, are defined as in Lemma
20 for appropriate k and e is an inhabitant of [C'] N e.

In the universal case, we build an inhabitant of [C] N e as Step Succ,Diff 1. SuccyDiff ey,
where Succy and Diff are as above e, ..., e; prove the codes of all successor configurations.

The proof from right to left is by induction with respect to length of inhabitants. Let I' -e¢:
[C] Ne. If e is a single combinator then ¢ = Stepq“b, by Lemma 19. Otherwise e = xe;...ey,
for an m-ary x. It is possible that e = init'ege;e, or finitejey, but then e, also proves [C] Ne.
Therefore the shortest inhabitant must begin with Step?’ or Step’, and we proceed as in the
proof of Lemmas 21 and 22, using Lemma 19 as a basic tool. O

Theorem 24 For every k > 0, the relativized inhabitation problem for BcLi(—,N) is complete in
(k-+2)-EXPTIME.

Proof: By a routine padding argument’ it suffices to prove that the halting problem for
expy_, (n)-space bounded ATM’s is reducible to inhabitation in BcrLy(—,N). The latter claim
follows from Lemmas 22 and 23: to determine if M accepts the input it is enough to ask if
' eN Tape. ]

If L € DrivE(expy,; (p(n))) then L <jop {w#?(M =%l | w € L} € DrivE(expy 4 (n)).
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