
T E C H N I C A L R E P O RT S I N C O M P U T E R S C I E N C E

Technical University of Dortmund

Bounded Combinatory Logic (Extended Version)

Boris Düdder
Technical University of Dortmund
Department of Computer Science
boris.duedder@cs.tu-dortmund.de

Moritz Martens
Technical University of Dortmund
Department of Computer Science
moritz.martens@cs.tu-dortmund.de

Jakob Rehof
Technical University of Dortmund
Department of Computer Science
jakob.rehof@cs.tu-dortmund.de

Paweł Urzyczyn
University of Warsaw

Institute of Informatics
urzy@mimuw.edu.pl

(Partly supported by grant N N206 355836 from the Ministry of Science and Higher Education)

Number: 840

February 2012

Technical University of Dortmund — Department of Computer Science
Otto-Hahn-Str. 14, 44227 Dortmund

A B S T R A C T

In combinatory logic one usually assumes a fixed set of basic combinators (axiom schemes),
usually K and S. In this setting the set of provable formulas (inhabited types) is Pspace-
complete in simple types and undecidable in intersection types. When arbitrary sets of axiom
schemes are considered, the inhabitation problem is undecidable even in simple types (this is
known as Linial-Post theorem).

Bounded combinatory logic (bclk) arises from combinatory logic by imposing the bound
k on the depth of types (formulae) which may be substituted for type variables in axiom
schemes. We consider the inhabitation (provability) problem for bclk: Given an arbitrary
set of typed combinators and a type τ, is there a combinatory term of type τ in k-bounded
combinatory logic?

Our main result is that the problem is (k + 2)-Exptime complete for bclk with intersection
types, for every fixed k (and hence non-elementary when k is a parameter). We also show that
the problem is Exptime-complete for simple types, for all k.

Theoretically, our results give new insight into the expressive power of intersection types.
From an application perspective, our results are useful as a foundation for composition syn-
thesis based on combinatory logic.

2

C O N T E N T S

1 Introduction 5

2 Preliminaries 9

3 Bounded Combinatory Logic 13

4 Simple types, bclk(→) 21

5 Lower bound for intersection types 23

bibliography 30

3

1I N T R O D U C T I O N

In standard combinatory logic (see, e.g., [5]), one usually considers a fixed set of typed com-
binators (a combinatory basis), for example S : (α → (β → γ)) → (α → β) → (α → γ) and
K : α → β → α. Under the propositions-as-types correspondence, combinator types corre-
spond to axiom schemes of propositional logic in a Hilbert-style proof system, with modus
ponens and a rule of axiom scheme instantiation as the principles of deduction. The schematic
interpretation of axioms corresponds to implicit polymorphism of combinator types, where
type variables (α, β, γ, . . .) may be instantiated with arbitrary types. Thus, the combinator K
has types τ → σ→ τ for all τ and σ.
In this paper we consider bounded combinatory logic (bclk), which arises from combinatory logic
by imposing the bound k on the depth of types (formulae) which may be substituted for type
variables in axiom schemes. For example, in bclk the type scheme of the combinator K can
only be instantiated to τ → σ → τ for τ and σ with depth ≤ k. By imposing the bound,
inhabitation becomes decidable in cases where the unbounded problem is undecidable.

Our interest in bounded combinatory logic is motivated both by theoretical concerns and
from the standpoint of applications. Theoretically, we are interested in the complexity and
expressive power of the system, depending on the bound. From an application perspective,
we consider bounded combinatory logic as a foundation for type-based synthesis, following
[9]. In the present paper we generalize from the monomorphic case of [9] to arbitrary bounded
levels of polymorphism.

Bounded combinatory logic. In contrast to standard combinatory logic (see, e.g., [5]), we bound
the depth of types used to instantiate types of combinators, but rather than considering a fixed
base of combinators (for example, the base S, K) as is usual in combinatory logic, we consider
the inhabitation problem relativized to an arbitrary set Γ of typed combinators, given as part of
the input:

Given Γ and τ, is there an applicative term e such that Γ `k e : τ?

The relativized problem is generally much harder than the fixed-base problem. For exam-
ple, inhabitation in standard (unbounded) simple-typed SK-calculus is Pspace-complete [12],
whereas the unbounded relativized problem is undecidable, even in simple types. We recall that
the latter type of problem has been considered since 1948 when Linial and Post [7] initiated
a line of work studying decision problems for arbitrary propositional axiom systems (often
referred to as partial propositional calculi, abbreviated PPC) answering a question posed by
Tarski in 1946. They proved (among other things) that there exists a PPC with an unsolvable de-
cision problem (Linial-Post theorem). Since then, many results have been obtained for various
PPC, e.g., Gladstone [3] and Singletary [10] showed that every r.e. degree can be represented

5

by a PPC. In 1974, Singletary [11] showed that the implicational fragment of PPC can repre-
sent every r.e. many-one degree. The problem considered there is identical to the unbounded
relativized inhabitation problem for simple types.

Our main result is that the relativized inhabitation problems for bclk with intersection types
form an infinite hierarchy, being (k + 2)-Exptime-complete for each fixed k. A non-elementary
lower bound follows for the problem where k is taken as an input parameter. Our lower
bound techniques, which may be of independent interest, expose new aspects of the expressive
power of intersection types. We generically simulate alternating Turing machines operating in
expk+1(n)-bounded space, where expm denotes the iterated exponential function. For each
k, we devise a numeral representation with intersection types in bclk for numbers between
0 and expk+1(n)− 1, and we use this system to achieve a succinct representation (exploiting
k-bounded polymorphism) of the Turing tape. In contrast, we show that the k-bounded inhab-
itation problem is Exptime-complete for simple types, for all k.

A foundation for composition synthesis With this paper we continue the work begun in [9] on
investigating limited systems of combinatory logic as a foundation for type-based synthesis
(automatic synthesis of function compositions from a repository of typed functions). In [9], we
proved the monomorphic inhabitation problem Exptime-complete and devised inhabitation
algorithms that we have since implemented and applied to synthesis. In our applications,
the set Γ models a repository, the goal type τ is considered as a specification of a desired
composition, and the inhabitation algorithm automatically constructs solutions (if any) to the
synthesis problem. The relativized inhabitation problem is the natural basis for applications
in synthesis, where Γ models a changing repository of functions. As argued in [9], intersection
types play a key role in these applications, since they can be used to specify deep semantic
properties.

A limited degree of polymorphism has been found to be very useful in applications, since it
allows for succinct specifications. In particular, the lowest level (bcl0) of the hierarchy studied
here turns out to be already of major importance. At this level, we are able to instantiate
type variables with atoms or intersections of such. Since type structure can be atomized by
introducing type names (atoms) for structured types through definitions, many interesting
problems can be specified and solved in bcl0.

As a simple example of succinctness, consider that we can represent any finite function
f : A → B as an intersection type τf =

⋂
a∈A a → f (a), where elements of A and B are type

constants. Suppose we have combinators Fi : τfi
in Γ, and we want to synthesize compositions

of such functions represented as types (in some of our applications they could, for example,
be refinement types [2]). We might want to introduce composition combinators of arbitary
arity, say g : (A → A)n → (A → A). In the monomorphic system, a function table for g
would be exponentially large in n. In bcl0, we can represent g with the single declaration
G : (α0 → α1) → (α1 → α2) → · · · → (αn−1 → αn) → (α0 → αn) in Γ. Through level-0
polymorphism, the action of g is thereby fully specified.

6

Interestingly, by the present results, the complexity of bcl0 is 2-Exptime complete and hence
comparable in complexity to other known synthesis frameworks (such as, e.g., variants of tem-
poral logic and of propositional dynamic logic). It is also interesting to observe that the lower
bound techniques of the present paper appear to reveal a methodology by which inhabitation
of intersection types can be used to express a form of logic programming at the type level,
which appears to be useful in synthesis. Space limitations preclude us from going into further
details here, and we report on our experience in synthesis in a separate paper.

7

2P R E L I M I N A R I E S

Types: Type expressions, ranged over by τ, σ etc., are defined by

τ ::= a | τ → τ | τ ∩ τ

where a, b, c, . . . range over atoms comprising of type constants, drawn from a finite set A in-
cluding the constant ω, and type variables, drawn from a disjoint denumerable set V ranged
over by α, β etc. We let T denote the set of all types.

As usual, types are taken modulo commutativity (τ ∩ σ = σ ∩ τ), associativity ((τ ∩ σ) ∩
ρ = τ ∩ (σ ∩ ρ)), and idempotency (τ ∩ τ = τ). A type environment Γ is a finite set of type
assumptions of the form x : τ. We let Dm(Γ) and Rn(Γ) denote the domain and range of Γ. Let
Var(τ), Cnst(τ) and At(τ) denote, respectively, the set of variables, the set of constants and
the set of atoms occurring in τ, and we extend the definitions to environments, written Var(Γ),
Cnst(Γ) and At(Γ) in the standard way.

A type τ ∩ σ is said to have τ and σ as components. For an intersection of several components
we sometimes write

⋂n
i=1 τi or

⋂
i∈I τi or

⋂{τi | i ∈ I}, where the empty intersection is identified
with ω.

Subtyping: Subtyping ≤ is the least preorder (reflexive and transitive relation) on T, with

σ ≤ ω, ω ≤ ω → ω, σ ∩ τ ≤ σ, σ ∩ τ ≤ τ, σ ≤ σ ∩ σ;

(σ→ τ) ∩ (σ→ ρ) ≤ σ→ τ ∩ ρ;

If σ ≤ σ′ and τ ≤ τ′ then σ ∩ τ ≤ σ′ ∩ τ′ and σ′ → τ ≤ σ→ τ′.

We identify σ and τ when σ ≤ τ and τ ≤ σ. The following distributivity properties follow
from the axioms of subtyping:

(σ→ τ) ∩ (σ→ ρ) = σ→ (τ ∩ ρ) (σ→ τ) ∩ (σ′ → τ′) ≤ (σ ∩ σ′)→ (τ ∩ τ′)

Paths: If τ = τ1 → · · · → τm → σ, then we write σ = tgtm(τ) and τi = argi(τ), for i ≤ m. If

argi(τ) = ρ for all i we also write τ = ρm → σ. A type of the form τ1 → · · · → τm → a, where
a 6= ω is an atom,1 is called a path of length m. A type τ is organized if it is a (possibly empty)
intersection of paths (those are called paths in τ). Note that premises in an organized type do
not have to be organized, i.e., organized is not necessarily normalized [4].

Lemma 1 Every type τ is equal to an organized type τ, computable in polynomial time.

1 Observe that τ1 → · · · → τm → ω = ω.

9

Proof: Define a = a if a is an atom and let τ ∩ σ = τ ∩ σ. If σ =
⋂

i∈I σi then take τ → σ =⋂
i∈I(τ → σi). ut

Sets of paths: For an organized type σ, we let Pm(σ) denote the set of all paths in σ of length m
or more. We extend the definition to arbitrary τ by implicitly organizing τ, i.e., we write Pm(τ)
as a shorthand for Pm(τ).

Type size: The size of a type τ, denoted |τ|, is defined to be the number of nodes in the syntax
tree of τ (this is identical to the textual size of τ). The path length of a type τ is denoted ‖τ‖
and is defined to be the maximal length of a path in τ.

Substitutions: A substitution is a function S : V → T such that S is the identity everywhere
but on a finite subset of V. For a substitution S, we define the support of S, written Supp(S),
as Supp(S) = {α ∈ V | α 6= S(α)}. We may write S : V → T when V is a finite subset of V

with Supp(S) ⊆ V. We write At(S) to denote the set {At(S(α)) | α ∈ Supp(S)}. A substitution
S is tacitly lifted to a function on types, S : T → T, by homomorphic extension. Finally, a
constant-function is a map c : A→ A such that c(ω) = ω. Constant-functions are tacitly lifted
to functions c : T→ T.

The following property, probably first stated in [1], is often called beta-soundness. Note that
the converse is trivially true.

Lemma 2 Let aj, for j ∈ J, be atoms.

1. If
⋂

i∈I(σi → τi) ∩
⋂

j∈J aj ≤ α then α = aj, for some j ∈ J.

2. If
⋂

i∈I(σi → τi) ∩
⋂

j∈J aj ≤ σ→ τ, where σ→ τ 6= ω, then the set

{i ∈ I | σ ≤ σi} is nonempty and
⋂{τi | σ ≤ σi} ≤ τ.

Lemma 3 Let
⋂

i∈I τi ≤ β1 → · · · → βm → p, where τi are paths. Then there is an i ∈ I such that
τi = α1 → · · · → αm → p and β j ≤ αj, for all j ≤ m.

Proof: Induction with respect to m, using the beta soundness (Lemma 2). ut

Lemma 4 Let S be a substitution and let c be a constant-function. Then σ ≤ τ implies S(σ) ≤ S(τ)
and c(σ) ≤ c(τ).

Proof: Induction with respect to the definition of σ ≤ τ. ut

Alternating Turing Machines

An alternating Turing machine is a tupleM = (Σ, Q, q0, qa, qr, ∆). The set of states Q = Q∃] Q∀
is partitioned into a set Q∃ of existential states and a set Q∀ of universal states. There is an
initial state q0 ∈ Q, an accepting state qa ∈ Q∀, and a rejecting state qr ∈ Q∃. We take

10

Σ = {0, 1, }, where is the blank symbol (used to initialize the tape but not written by the
machine). The transition relation ∆ satisfies

∆ ⊆ Σ×Q× Σ×Q× {l, r},

where h ∈ {l, r} are the moves of the machine head (left and right). For b ∈ Σ and q ∈ Q, we
write ∆(b, q) = {(c, p, h) | (b, q, c, p, h) ∈ ∆}. We assume ∆(b, qa) = ∆(b, qr) = ∅, for all b ∈ Σ,
and ∆(b, q) 6= ∅ for q ∈ Q \ {qa, qr}. A configuration of M is a word wqw′ with q ∈ Q and
w, w′ ∈ Σ∗. The successor relation C ⇒ C ′ on configurations is defined as usual [8], according
to ∆. We classify a configuration wqw′ as existential, universal, accepting etc., according to q. The
notion of eventually accepting configuration is defined by induction:2

• An accepting configuration is eventually accepting.

• If C is existential and some successor of C is eventually accepting then so is C.

• If C is universal and all successors of C are eventually accepting then so is C.

2 Formally we define the set of all eventually accepting configurations as the smallest set satisfying the appropriate
closure conditions.

11

3B O U N D E D C O M B I N AT O RY L O G I C

Definition 5 (Levels) Given a type τ we define the level of τ, written `(τ), as follows.

`(a) = 0, for a ∈ A∪V;
`(τ → σ) = 1 + max{`(τ), `(σ)};
`(
⋂n

i=1 τi) = max{`(τi) | i = 1, . . . , n}.

The level of a substitution S, written `(S), is defined as

`(S) = max{`(S(α)) | α ∈ V}.

A level-k type is a type τ with `(τ) ≤ k, and a level-k substitution is a substitution S with `(S) ≤ k.
For k ≥ 0, we let Tk denote the set of all level-k types. For a subset A of atomic types, we let Tk(A)
denote the set of level-k types with atoms (leaves) in the set A. ut

Notice that the level of a type is independent from the width (number of arguments) of inter-
sections. Notice also that `(S) is completely determined by the restriction of S to Supp(S): if
Supp(S) = ∅, then `(S) = 0, and if Supp(S) 6= ∅, then `(S) = max{`(S(α)) | α ∈ Supp(S)}.
Finally, we have `(S ◦ S′) ≤ `(S) + `(S′).

Type assignment: For each k ≥ 0 the system bclk(→,∩) (k-bounded combinatory logic with in-
tersection types) is defined by the type assigment rules shown in Figure 3.1. In rule (var), the
condition `(S) ≤ k is understood as a side condition to the axiom Γ, x : τ `k x : S(τ). The
restriction to simple types (types without ∩) is called bclk(→) and is defined by the rules (var),
(→E) and (≤), where τ and τ′ range over simple types, by dropping all axioms from the sub-
typing relation that involve ∩, and by considering only substitutions S mapping type variables
to simple types. Recall from [9] finite combinatory logic with intersection types, denoted fcl. This
system can be presented as the restriction of bclk in which the (var) rule is simplified to the
axiom Γ, x : τ ` x : τ.

In this paper we are addressing the following relativized inhabitation problem:
Given Γ and τ, is there an applicative term e such that Γ `k e : τ?

13

[`(S) ≤ k]
Γ, x : τ `k x : S(τ)

(var)
Γ `k e : τ → τ′ Γ `k e′ : τ

Γ `k (e e′) : τ′
(→E)

Γ `k e : τ1 Γ `k e : τ2

Γ `k e : τ1 ∩ τ2
(∩I)

Γ `k e : τ τ ≤ τ′

Γ `k e : τ′
(≤)

Figure 3.1: Bounded combinatory logic bclk

Algorithm

In this section we formulate an algorithm to decide the relativized inhabitation problem
for bclk, and derive the (k + 2)-Exptime upper bound.

Lemma 6 Let Γ `k e : τ and let S be a level-m substitution. Then there exists a derivation of
Γ `k+m e : S(τ) of the same depth.

Proof: Induction with respect to the derivation of Γ `k e : τ. In case the derivation is by rule
(var), with Γ′, x : σ `k x : S1(σ) and S1(σ) = τ, we have the derivation: Γ′, x : σ `k+m x :
S ◦ S1(σ). This is evidently of the same depth as the original derivation. The remaining cases
follow easily by induction. ut

Lemma 7 Let Γ `k e : τ and let c be a constant-function such that c is the identity on Cnst(Γ). Then
there exists a derivation of Γ `k e : c(τ) of the same depth.

Proof: Induction with respect to the derivation of Γ `k e : τ. In case the derivation is by rule
(var), assume Γ′, x : σ `k x : S(σ) with S(σ) = τ. Since c is the identity on Cnst(Γ), it follows
that c is the identity on Cnst(σ). Therefore, the map c ◦ S acts as a type substitution on σ, and
consequently we have the derivation: Γ′, x : σ `k x : c ◦ S(σ), proving the claim.

In case the derivation is by rule (≤), we use Lemma 4 and apply the induction hypothesis.
The remaining cases follow easily by induction. ut

Let Atω(Γ, τ) = At(Γ) ∪At(τ) ∪ {ω}. The following proposition shows that, in order to solve
an inhabitation question Γ `k ? : τ, one needs only consider rule (var) restricted to substitutions
of the form S : Var(Γ)→ Tk(Atω(Γ, τ)).

We say that a substitution S occurs in a derivation D, whenever S is used in an application
of rule (var) in D.

14

Proposition 8 If Γ `k e : τ, then there exists a derivation D of Γ `k e : τ such that every substitution
S occurring in D satisfies the conditions

1. Supp(S) ⊆ Var(Γ);

2. At(S) ⊆ Atω(Γ, τ).

Proof: By induction with respect to the depth d of the derivation of Γ `k e : τ.
Assume d = 1. We must have Γ′, x : σ `k x : S(σ) with S(σ) = τ, by rule (var). We can

restrict S such that Supp(S) ⊆ Var(σ), and hence also Supp(S) ⊆ Var(Γ). Because S(σ) = τ, we
then also have At(S) ⊆ At(τ).

Assume d > 1. Suppose we have a derivation

D1
Γ `k e : σ→ τ

D2
Γ `k e′ : σ

Γ `k ee′ : τ

by rule (→E), where di < d is the depth of the subderivation Di (i = 1, 2). Let S be the
substitution with Supp(S) ⊆ Var(σ) such that S is the identity on Var(τ) and all variables in
Var(σ) \Var(τ) are mapped to ω. Using Lemma 6 we have Γ `k e : S(σ)→ τ and Γ `k e′ : S(σ)
by derivations of depth di, respectively. By definition of S, we have

Var(S(σ)) ⊆ Var(τ) (3.1)

Let c be the constant-function such that c is the identity on Cnst(Γ) ∪Cnst(τ) and mapping all
other constants to ω. By Lemma 7, we have Γ `k e : c(S(σ)) → τ and Γ `k e′ : c(S(σ)) by
derivations of depth di < d, respectively. By definition of c together with (3.1), we have

Atω(Γ, c(S(σ)) ⊆ Atω(Γ, τ) (3.2)

Applying the induction hypothesis, we can conclude that there exist derivations D′1 and D′2
such that we have

D′1
Γ `k e : c(S(σ))→ τ

D′2
Γ `k e′ : c(S(σ))

Γ `k ee′ : τ

with every substitution in S occurring in D′1 or D′2 satisfying Supp(S) ⊆ Var(Γ) and At(S) ⊆
Atω(Γ, c(S(σ))→ τ). By (3.2) we have

Atω(Γ, c(S(σ))→ τ) = Atω(Γ, τ)

thereby proving the claim.

15

Suppose we have a derivation by rule (≤) of the form

D1
Γ `k e : σ σ ≤ τ

Γ `k e : τ

where D1 is of depth d1 < d. We define substitution S and constant-function c as in the
previous case and apply Lemma 6 and Lemma 7 to obtain a derivation Γ `k e : c(S(σ)) of
depth d1 < d and, by Lemma 4, c(S(σ)) ≤ τ. Applying induction hypothesis, we have a
derivation

D′1
Γ `k e : c(S(σ)) c(S(σ)) ≤ τ

Γ `k e : τ

satisfying the claim.
The remaining case of rule (∩I) follows easily from the induction hypothesis. ut

The following lemma shows that inhabitation in bclk(→,∩) is equivalent to inhabitation in
fcl modulo expansion of the type environment. Given a number k, an environment Γ and
a type τ, define for each x ∈ Dm(Γ) the set of substitutions

S (Γ,τ,k)
x = Var(Γ(x))→ Tk(Atω(Γ, τ))

and define the environment Γ(τ,k) with domain Dm(Γ) so that, for x ∈ Dm(Γ),

Γ(τ,k)(x) =
⋂{S(Γ(x)) | S ∈ S (Γ,τ,k)

x }

Lemma 9 (Expansion) One has Γ `k e : τ in bclk(→,∩) iff Γ(τ,k) ` e : τ in fcl.

Proof: If Γ `k e : τ by a derivation D, consider each application of rule (var) of the form
Γ′, x : σ `k x : S(σ), occurring in D. By Proposition 8, we can assume that S is a member of
the set S (Γ,τ,k)

x . Hence, one has Γ(τ,k) ` x : S(σ) in fcl, by an application of rule (var), followed
by an application of rule (≤). It follows that Γ(τ,k) ` e : τ holds in fcl.

For the implication in the other direction, consider that one has in bclk(→,∩)

Γ `k x :
⋂{S(Γ(x)) | S ∈ S (Γ,τ,k)

x }

for all x ∈ Dm(Γ), by multiple applications of rule (var), followed by rule (∩I). ut

The following lemma was shown in [9] using a different representation of paths. Here it is
formulated and proved in terms of the notion of paths defined in the present paper.

16

Lemma 10 (Path Lemma for fcl [9]) The following are equivalent conditions:

1. Γ ` x e1 . . . em : τ;

2. There exists a set P of paths in Pm(Γ(x)) such that

a)
⋂

π∈P tgtm(π) ≤ τ;

b) Γ ` ei :
⋂

π∈P argi(π), for all i ≤ m.

Proof: (⇒) Induction with respect to the derivation of Γ ` (x e1 . . . em) : τ. We assume w.l.o.g.
that all types considered are organized (we can organize them according to Lemma 1).

If the last rule is (var) then m = 0 and Γ(x) = τ. Since τ is the intersection of its paths, we
can choose P = P0(τ) with τ =

⋂
π∈P π.

If the last rule of the derivation is (≤), then the claim follows easily by induction hypothesis
and transitivity of ≤.

If the last rule is (∩I), then Γ ` (x e1 . . . em) : τ1 and Γ ` (x e1 . . . em) : τ2, with τ1 ∩ τ2 = τ. By
the induction hypothesis, there are subsets P1, P2 of paths in Pm(Γ(x)) with Γ ` ej :

⋂
π∈Pi

argj(π)

and
⋂

π∈Pi
tgtm(π) ≤ τi, for i = 1, 2 and j = 1, . . . , m. Let P = P1 ∪ P2. Then it fol-

lows by (∩I) that Γ ` ej :
⋂

π∈P argj(π), for j = 1 . . . m, and by monotonicity of ∩ that⋂
π∈P tgtm(π) ≤ τ1 ∩ τ2 = τ, as desired.
If the last rule of the derivation is (→E), then we have

Γ ` (x e1 . . . em−1) : τ′ → τ and Γ ` em : τ′,

for some τ′. By the induction hypothesis there exists Pm−1 ⊆ Pm−1(Γ(x)) such that

(I1) Γ ` ej :
⋂

π∈Pm−1
argj(π) for j = 1 . . . m− 1;

(I2)
⋂

π∈Pm−1
tgtm−1(π) ≤ τ′ → τ.

Let

Pm = {π ∈ Pm−1 | tgtm−1(π) = σπ → σ′π for some σπ , σ′π with τ′ ≤ σπ}.

For π ∈ Pm, write tgtm−1(π) = σπ → σ′π . By (I2) and Lemma 2, we have Pm 6= ∅ and

τ′ ≤ ⋂
π∈Pm σπ (3.3)

and ⋂
π∈Pm σ′π ≤ τ (3.4)

Since Pm ⊆ Pm−1(Γ(x)), we have by definition of Pm that Pm ⊆ Pm(Γ(x)). Moreover, by
definition of Pm we have⋂

π∈Pm argm(π) =
⋂

π∈Pm σπ (3.5)

17

and ⋂
π∈Pm tgtm(π) =

⋂
π∈Pm σ′π (3.6)

Since Γ ` em : τ′, we have Γ ` em :
⋂

π∈Pm argm(π) by rule (≤), (3.3) and (3.5). And from (3.4)
and (3.6) we get

⋂
π∈Pm tgtm(π) ≤ τ. It follows that we can choose P = Pm.

(⇐) Since Γ(x) is the intersection of its paths, we have

Γ(x) ≤ arg1(π)→ · · · → argm(π)→ tgtm(π),

for π ∈ Pm(Γ(x)). The claim now follows from the assumption together with obvious applica-
tions of the type rules. ut

Lemma 11 (Path Lemma for bclk(→,∩)) The following are equivalent conditions:

1. Γ `k x e1 . . . em : τ;

2. There exists a set P of paths in Pm(
⋂{S(Γ(x)) | S ∈ S (Γ,τ,k)

x }) such that

a)
⋂

π∈P tgtm(π) ≤ τ;

b) Γ `k ei :
⋂

π∈P argi(π), for all i ≤ m.

Proof: Immediate, by Lemma 9 and Lemma 10. ut
The following corollary will be used later.

Corollary 12 Let Γ(x) =
⋂

j∈J(τ
j
1 → · · · → τ

j
m → σj). If Γ ` x e1 . . . em : τ then there are

substitutions S`, for ` ∈ L, and numbers j` such that

1.
⋂
`∈L S`(σ

j`) ≤ τ;

2. Γ `k ei :
⋂
`∈L S`(τ

j`
i).

Proof: Let the set of paths P be chosen according to Lemma 11. Write S (Γ,τ,k)
x = S1, . . . , Sr.

Each path π ∈ P is of the form

π = S`(τ
j`
1)→ · · · → S`(τ

j`
m)→ π`

where π` is a path in S`(σ
j`), for some ` (1 ≤ ` ≤ r).

Let L be the set of all ` (1 ≤ ` ≤ r) such that for some path π ∈ P

π = S`(τ
j`
1)→ · · · → S`(τ

j`
m)→ π`

Then we have
⋂

π∈P argi(π) =
⋂
`∈L S`(τ

j`
i), and since S`(σ

j`) is just the intersection of all its
paths, we also have S`(σ

j`) ≤ π`, hence
⋂
`∈L S`(σ

j`) ≤ ⋂
`∈L π`. From Lemma 11 we have

Γ `k ei :
⋂
`∈L S`(τ

j`
i) and

⋂
`∈L π` ≤ τ, from which the claim follows. ut

Let expk be the iterated exponential function, given by exp0(n) = n, expk+1(n) = 2expk(n).
The lemma below can be shown by an elementary counting argument.

18

Lemma 13 For every k, there is a polynomial p(n) such that the number of level-k types over n atoms
is at most expk+1(p(n)), and the size of such types is at most expk(p(n)). The number and size of
simple level-k types (for a fixed k) is respectively bounded by a polynomial and a constant.

Proof: For general level-k types, we prove by induction with respect to k that the number
of level-k types over n atoms can be bounded by expk+1(p(n)), each of size bounded by
expk(p(n)). Indeed, at level 0 we have subsets of n possible atoms, yielding 2n level-0 types
each of size bounded by n, and at level k + 1 we can form intersections (subsets) of types
of the form τ[k] → σ[k], where τ[k] and σ[k] are level-k types. Hence, assuming inductively
expk+1(q(n)) level-k types for a polynomial q(n), the number of level-(k + 1) types is bounded

by 2(expk+1(q(n)))
2
, which can in turn be bounded by expk+2(r(n)) for a polynomial r(n). More-

over, assuming inductively that the size of a level-k type is bounded by expk(q(n)), intersec-
tions of at most expk+1(q(n)) such types are of size bounded by expk(q(n)) × expk+1(q(n)),
which in turn can be bounded by expk+1(r(n)).

For simple types bounded by depth k, the claim follows easily by an inductive argument
with respect to k. ut

Theorem 14 Inhabitation in bclk(→,∩) is in (k + 2)-Exptime.

Proof: The alternating Turing machine shown in Figure 3.2 is a decision procedure for inhabi-
tation in bclk(→,∩) for each k ≥ 0, being a direct alternating implementation of Lemma 11. In
Figure 3.2 we use shorthand notation for instruction sequences starting from existential states
(choose . . .) and instruction sequences starting from universal states (forall(i = 1 . . . k) Si).
A command of the form choose x ∈ S branches from an existential state to successor states
in which x gets assigned distinct elements of S. A command of the form forall(i = 1 . . . k) Si
branches from a universal state to successor states from which each instruction sequence Si is
executed.

The machine operates in bounded space, because, for all Γ, τ, k, x, the set S (Γ,τ,k)
x is fi-

nite. More precisely, it follows from Lemma 13 that the size of S (Γ,τ,k)
x can be bounded by

expk+1(p(n)). For consider that we have, for some polynomial r(n)

| S (Γ,τ,k)
x |=| Tk(Atω(Γ, τ)) ||Var(Γ)|≤ (expk+1(r(n)))

n

which shows that | S (Γ,τ,k)
x | is bounded by expk+1(p(n)) for a polynomial p(n).1 Moreover,

we have by Lemma 13 that the size of each level-k type can be bounded by expk(p(n)), for
some polynomial p(n). It follows that the types σ′ (Figure 3.2, line 2) can be written down
in space bounded by expk+1(p(n)), and hence the algorithm is bounded in alternating space
expk+1(p(n)). By the identity Aspace(f (n)) = Dtime(2O(f (n))) inhabitation is therefore in (k+
2)-Exptime. ut

19

Input : Γ, τ, k
loop :

1 choose (x : σ) ∈ Γ;
2 σ′ :=

⋂{S(σ) | S ∈ S (Γ,τ,k)
x };

3 choose m ∈ {0, . . . , ‖σ′‖};
4 choose P ⊆ Pm(σ′);

5 if (
⋂

π∈P tgtm(π) ≤ τ) then

6 if (m = 0) then accept;
7 else

8 forall(i = 1 . . . m)
9 τ :=

⋂
π∈P argi(π);

10 goto loop;

Figure 3.2: Alternating Turing machine deciding inhabitation in bclk

1 It is worth noting that the number of substitutions at level zero is exponential, even if there are only 2 atoms to
substitute for n variables, and that also holds with simple types. The exponential jumps at higher levels are due to
intersections.

20

4S I M P L E T Y P E S , b c lk(→)

The upper bound for simple types is obtained as a special case of the analysis in Section 3.

Theorem 15 Inhabitation in bclk(→) is in Exptime, for all k.

Proof: The proof uses the same argument as the proof of Theorem 14. The difference is that
now we only substitute simple types. Under this restriction, the machine of Figure 3.2 operates
in alternating polynomial space, because all types of the form S(σ) are of linear size. ut

Theorem 16 For every k ≥ 0, the inhabitation problem for bclk(→) is Exptime-complete.

Proof: The argument below is inspired by the Exptime-hardness proof in [6]. Take an alternat-
ing TM, working in polynomial space p(n). We use fresh type atoms to represent every state
and tape symbol. A configuration C = wqw′, where w = b1 . . . bm−1 and w′ = bm . . . bp(n) is
encoded as a type

ϕC = b1 → · · · → bm−1 → q→ bm → · · · → bp(n).
The initial configuration for input a1 . . . an is

ϕ0 = q0 → a1 → · · · → an → → · · · → ,
with an appropriate number of blanks . We define an environment Γ so that, for all C,

C is eventually accepting if and only if Γ ` ϕC . (*)
We put into Γ polymorphic patterns for accepting configurations:

α1 → · · · → αm−1 → qa → αm → · · · → αp(n) ,
for all m = 1, . . . , p(n)− 1, and types representing machine moves, as we now define.

Let ∆(b, q) = {(cj, pj, hj) | j = 1, . . . , r}. The patterns
ζbqm(~α) = α1 → · · · → αm−1 → q→ b→ αm+1 → · · · → αp(n)

represent all configurations where ∆(b, q) is applicable (and m is the head position). For
j = 1, . . . , r, type ηbqmj(~α) represents the j-th successor configuration. If hj = R then

ηbqmj(~α) = α1 → · · · → αm−1 → cj → pj → αm+1 → · · · → αp(n) ,
otherwise hj = L, and

ηbqmj(~α) = α1 → · · · → αm−2 → pj → αm−1 → cj → αm+1 → · · · → αp(n) .
The main property of the above types is as follows. If C = b1 . . . bm−1qbbm+1 . . . bp(n) then there
exists exactly one substitution S (mapping each αi to bi) such that S(ζbqm) = ϕC . In addition,
if D1, . . . ,Dr are all the successor configurations of C then we have S(ηbqmj) = ϕDj . Now if q is
an existential state then Γ contains all types of the form

ηbqmj → ζbqm ,
and for universal q there is only one type:

21

ηbqm1 → · · · → ηbqmr → ζbqm .
To prove the “only if” part of (*) we proceed by induction with respect to the definition of
acceptance. First observe that Γ ` ϕC , for all accepting configurations. Then take a non-final
existential C = wqw′ with q at position m. If C is eventually accepting then it is so because one
of the successors of C, say D, is eventually accepting. The induction hypothesis applies to D,
thus Γ ` ϕD holds. Now, observe that ϕD = ηbqmj[S] and ϕC = ζbqm[S], for some b, j, and an
appropriate substitution S. It follows that Γ ` ϕC .

If C is universal then all its successors D1, . . . ,Dr must be eventually accepting, whence
ϕD1 , . . . , ϕDk are all derivable. The substitution S turns ηbqm1 → · · · → ηbqmk → ζbqm into
ϕD1 → · · · → ϕDr → ϕC , so we can derive ϕC .

For the “if” part, we use induction with respect to proofs. The base case is only possible
when C is accepting. Otherwise the only way to derive Γ ` ϕC , for an existential C, is by using
one of the formulas ηbqmj → ζbqm, so for some S we must have Γ ` ηbqmj[S] and ζbqm[S] = ϕC .
Hence ηbqmj[S] represents a possible next configuration, and we can use induction.

In the universal case, to derive ϕC we must use the type ηbqm1 → · · · → ηbqmk → ζbqm , and
a substitution S such that Γ ` ηbqmj[S], for all j, and ζbqm[S] = ϕC . But then ηbqmj[S] = ϕDj ,
where Dj are the successors of C. By the induction hypothesis, all Dj are eventually accepting,
and therefore so is C. ut

22

5L O W E R B O U N D F O R I N T E R S E C T I O N T Y P E S

In this section we fix a number K and an expK+1(n)-space bounded alternating Turing machine
M. In what follows it is assumed that k ≤ K, whenever level k is considered. The basic idea is
to represent a configuration ofM by, essentially, a type of the form

⋂expK+1(n)−1
i=0 Cell(ai, q, 〈m〉K, 〈i〉K),

where ai ∈ Σ, q ∈ Q, 0 ≤ m ≤ expK+1(n)− 1. Each component Cell(ai, q, 〈m〉K, 〈i〉K) represents
one of the tape cells, where ai represents the symbol in the i-th cell, q represents the current
state, type 〈m〉K represents the address (number) of the cell which is under the current ATM
head position, and 〈i〉K represents the address of the cell itself. Notice that the types q and
〈m〉K are identical across all the components of the type (i.e., across all indexes i). The adresses
〈i〉K impose a numerical order on the cell representations, so that we can represent a tape
consisting of a sequence of cells. Moreover, we can use these addresses to compute the head
position of the ATM (moving left or right of the current cell address).

Since we need a representation which is polynomial bounded in the size of the ATM input,
we cannot represent such types explicitly in our reduction. In order to achieve a succinct (poly-
nomial sized) representation, we exploit polymorphism. The basic insight in the reduction is
to represent the large configuration types implicitly, as polymorphic types Cell(α, q, β, γ), and
to arrange the environment Γ coding the behavior of M in such a way that large expansions
(under polymorphic instantiation) of such types become forced into the explicit form shown.
As in the proof of Theorem 16, the basic strategy for coding the ATM behavior is to represent
a computation sequence C1C2 · · · Cm by a sequence of forced inhabitation goals in reverse order
of implication, by (essentially) having the implications [Ci+1] → [Ci] in Γ such that asking for
inhabitation of [Ci] forces the inhabitation of [Ci+1] (letting [C] denote the type representing the
configuration C).

Predicates

The predicates we use are certain type patterns serving as “containers” for their arguments. The
idea is that a predicate like F(τ, σ) encodes a pair of types τ and σ and a “flag” F in a unique
way. This is achieved by making sure that type F(τ, σ) is large enough to never be substituted
for a variable. In addition, τ and σ are placed inside F(τ, σ) several times to avoid unwanted
subtyping.

Some auxiliary notation for the beginning. Write F[1] for F and F[n+1] for F[n] → F. For
instance, F[4] = ((F → F)→ F)→ F. Also let Ωτ = (τ → τ)→ τ → τ.

23

Let N > K be a fixed number. Type F(τ1, τ2, τ3, τ4) (a predicate of four arguments) is defined
using a dedicated type constant F (the predicate identifier), as follows:

F(τ1, τ2, τ3, τ4) = (((F[N] → Ωτ1)→ Ωτ2)→ Ωτ3)→ Ωτ4 .
Predicates of fewer arguments are defined by repeating the last one, e.g. G(τ, σ) will stand for
G(τ, σ, σ, σ). In what follows, the word “predicate” may refer to any F(τ1, . . . , τ4).
The level of F(τ1, . . . , τ4) is larger than K, and therefore types of the form F(τ1, . . . , τ4) never
occur in the range of a substitution. Further properties are as follows:

Lemma 17 For all types τ, σ and all predicates Φi and Φ:

1. If
⋂

i∈I Ωτi ≤ Ωσ then τi = σ, for some i.

2. If
⋂

i∈I Φi ≤ Φ then Φ = Φi, for some i.

Proof: Use Lemma 2. Details omitted. ut

In our construction we use the following forms of predicates (for k ≤ K and j ≤ n):

• Unary: Zerok(α), zk(α), mk(α), Maxk(α), Numk(α), nk(α), Numj(α), Bit(α), Tapej(α).

• Binary: Succk(α, β), Diffk(α, β), dk(α, β), nk(α, β).

• Ternary: Rk(α, β, γ), Lk(α, β, γ).

• Quaternary: Cell(α, β, γ, δ).

In addition to that we also have the following constants (for j ≤ n):

• 0, 1, 0j, 1j, •.

and special constants for all internal states and tape symbols of the machine.

Intersection type numerals

Fix a natural number n. Let B[n] denote the union of n copies of B = {0, 1}, written B[n] =
{01, . . . , 0n} ∪ {11, . . . , 1n}. We let b range over B and we let b range over B[n]. The sets of
level-k numerals (k ≥ 0), denoted Nk, are constructed from B[n] by induction:

• N0 = {⋂n
i=1 bi | bi ∈ {0i, 1i} for i = 1 . . . n}

• Nk+1 = {⋂τ∈Nk
(τ → bτ) | bτ ∈ {0, 1}, for τ ∈ Nk}

24

Clearly, the size of Nk is expk+1(n). The value of a numeral σ ∈ Nk is denoted JσK and is
defined by induction with respect to k:

• k = 0: J
⋂n

i=1 biK = ∑n
i=1JbiK× 2i−1, with J0iK = 0 and J1iK = 1

• k > 0: J
⋂

σ∈Nk
(τ → bτ)K = ∑τ∈Nk

bτ × 2JτK

For instance, if n = 4 then the value of 01 ∩ 12 ∩ 03 ∩ 14 is 2 + 8 = 10. And if n = 2 then the
value of ((01 ∩ 02)→ 0) ∩ ((01 ∩ 12)→ 1) ∩ ((11 ∩ 02)→ 0) ∩ ((11 ∩ 12)→ 1) is 10 as well.

It is easy to prove by induction that for σ ∈ Nk we have 0 ≤ JσK ≤ expk+1(n)− 1, and for

k > 0 we can write σ canonically as σ =
⋂expk(n)−1

i=0 (τi → bi), where JτiK = i and bi ∈ B, and

with JσK = ∑
expk(n)−1
i=0 bi × 2i.

It is also straightforward to see that, for any x between 0 and expk+1(n)− 1, there is exactly
one σ ∈ Nk with JσK = x. We use the notation σ = 〈x〉k.

The encoding

Our goal is to define a bclK type environment Γ, representing the behavior of the machineM.
The environment Γ consists of several groups of declarations, to handle predicates over numer-
als, the tape, and the transition function. Note that each type σ in Γ is an intersection which
has a component of the form (•m → •), for some m, and that all other components are arrows
of m arguments, ending with predicates of the same identifier F. We then say that σ, and the
corresponding combinator, is m-ary, and that F is the target identifier of σ.

Lemma 18 If x is m-ary and Γ `K xe1 . . . er : • then r = m.

Proof: If Γ `K xe1 . . . er : • then by Lemma 11 we have
⋂

π∈P tgtr(π) ≤ •, for some set P of
paths in types of the form S(Γ(x)). The only such path is •m → •, whence m = r. ut

Lemma 19 Let Γ `K e : F(τ1, . . . , τ4) ∩ •, where F(τ1, . . . , τ4) is a predicate. Then e = xe1 . . . em,
for some m-ary combinator x with target identifier F. More precisely, Γ(x) has the form ξ ∩ (ζ1 →
· · · → ζm → F(ρ1, . . . , ρ4)), and there is a substitution S such that S(ρi) = τi, for i = 1, . . . , 4, and
Γ `K ei : S(ζi), for i = 1, . . . , m.

Proof: The term e must be of the form e = xe1 . . . er, where x is a combinator of some
arity m in Γ. It follows from Lemma 18 that m = r, and from Corollary 12 we obtain that⋂
`∈L Φ` ∩ • ≤ F(τ1, . . . , τ4) ∩ •, where Φ` are predicates with the same target G. Since • is a

constant, we actually have
⋂
`∈L Φ` ≤ F(τ1, . . . , τ4). By Lemma 17, one of Φ` must be equal to

F(τ1, . . . , τ4), in particular F = G. Note that Φ` is obtained as S(tgtm(φ)), for some component
φ of Γ(x), and this S is the substitution required by the lemma. ut

25

Numeral predicates

The declarations shown in Figure 5.1 and Figure 5.2 are included in Γ, for every k < K. To-
gether they specify the way numerals are handled at each level k. The predicates are defined
inductively with respect to k. Thus, in Figure 5.1 we define the base predicates for numerals
in N0, whereas Figure 5.2 contains definitions for predicates at all higher levels k + 1. These
latter definitions may inductively refer to definitions at lower levels (for example, in Figure 5.2,
the declaration for the combinator Nk+1 refers to the lower level predicate Zerok).

Z0 : Zero0(01 ∩ 02 ∩ · · · ∩ 0n) ∩ •
M0 : Max0(11 ∩ 12 ∩ · · · ∩ 1n) ∩ •

N0 : [n2(α)→ Num0(11 ∩ α)] ∩ [n2(α)→ Num0(01 ∩ α)] ∩ [• → •]
n2

0 : [n3(α)→ n2(12 ∩ α)] ∩ [n3(α)→ n2(02 ∩ α)] ∩ [• → •]
. . . : . . .
nn

0 : nn(1n) ∩ nn(0n) ∩ •

D0 : [d0(α, β)→ Num0(α)→ Num0(β)→ Diff0(α, β)] ∩ [• → • → • → •]
d0 :

⋂n
i=1(d0(0i ∩ α, 1i ∩ β) ∩ d0(1i ∩ α, 0i ∩ β)) ∩ •

S0 : [Num0(01 ∩ α)→ Num0(11 ∩ α)→ Succ0(01 ∩ α, 11 ∩ α)] ∩
[Num0(11 ∩ 02 ∩ α)→ Num0(01 ∩ 12 ∩ α)→ Succ0(11 ∩ 02 ∩ α, 01 ∩ 12 ∩ α)] ∩
. . .∩
[Num0(11 ∩ 12 ∩ · · · ∩ 1n−1 ∩ 0n)→

Num0(01 ∩ 02 ∩ · · · ∩ 0n−1 ∩ 1n)→
Succ0(11 ∩ 12 ∩ · · · ∩ 1n−1 ∩ 0n, 01 ∩ 02 ∩ · · · ∩ 0n−1 ∩ 1n)]∩

[• → • → •]

Figure 5.1: Numeral predicates, level 0

Turing machine

Now we turn to the actual machine simulation. Declarations in Figure 5.3 are used to “create”
the initial configuration with input word a1 . . . an and with further tape cells filled with blanks
up to length expK+1(n). Tape cells are identified by numbers from 0 to expK+1(n)− 1.

Before we define the core part of our coding, we introduce one more notational convention.
A multiple implication τ1 → τ2 → · · · → τm → τ is sometimes written as (τ1, . . . , τm) → τ.
We extend this style by using informal abbreviations for sequences of premises. For instance,

26

B : Bit(0) ∩ Bit(1) ∩ •
Zk+1 : [Numk+1(α)→ zk+1(α)→ Zerok+1(α)] ∩ [• → • → •]
zk+1 : [zk+1(α)→ zk+1((β→ 0) ∩ α)] ∩ [• → •]
z′k+1 : zk+1(β→ 0) ∩ •

Mk+1 : [Numk+1(α)→ mk+1(α)→ Maxk+1(α)] ∩ [• → • → •]
mk+1 : [mk+1(α)→ mk+1((β→ 1) ∩ α)] ∩ [• → •]
m′k+1 : mk+1(β→ 1) ∩ •

Nk+1 : [Bit(γ)→ nk+1(β→ γ, α)→ Zerok(β)→ Numk+1((β→ γ) ∩ α)]∩
[• → • → • → •]

nk+1 : [Bit(ε)→ Succk(β, δ)→ nk+1(δ→ ε, α)→ nk+1(β→ γ, (δ→ ε) ∩ α)]∩
[• → • → • → •]

n′k+1 : [Bit(ε)→ Succk(β, δ)→ Maxk(δ)→ nk+1(β→ γ, δ→ ε)]∩
[• → • → • → •]

Dk+1 : [dk+1(α, β)→ Numk+1(α)→ Numk+1(β)→ Diffk+1(α, β)]∩
[• → • → • → •]

dk+1 : dk+1((γ→ 1) ∩ α, (γ→ 0) ∩ β) ∩ dk+1((δ→ 0) ∩ α, (δ→ 1) ∩ β) ∩ •

Sk+1 : [Rk+1(β, α, γ)→ Zerok(β)→ Succk+1((β→ 0) ∩ α, (β→ 1) ∩ γ)] ∩
[Lk+1(β, α, γ)→ Zerok(β)→ Succk+1((β→ 1) ∩ α, (β→ 0) ∩ γ)]∩
[• → • → •]

sk+1 : [Succk(β, δ)→ Lk+1(δ, α, γ)→ Lk+1(β, (δ→ 1) ∩ α, (δ→ 0) ∩ γ)] ∩
[Succk(β, δ)→ Rk+1(δ, α, γ)→ Lk+1(β, (δ→ 0) ∩ α, (δ→ 1) ∩ γ)] ∩
[Succk(β, δ)→ Rk+1(δ, α, γ)→ Rk+1(β, (δ→ 0) ∩ α, (δ→ 0) ∩ γ)] ∩
[Succk(β, δ)→ Rk+1(δ, α, γ)→ Rk+1(β, (δ→ 1) ∩ α, (δ→ 1) ∩ γ)]∩
[• → • → •]

s′k+1 : [Maxk(δ)→ Succk(β, δ)→ Rk+1(β, δ→ 0, δ→ 0)] ∩
[Maxk(δ)→ Succk(β, δ)→ Rk+1(β, δ→ 1, δ→ 1)] ∩
[Maxk(δ)→ Succk(β, δ)→ Lk+1(β, δ→ 0, δ→ 1)]∩
[• → • → •]

Figure 5.2: Numeral predicates, level k + 1

type τ1 → τ2 → τ3 → σ1 → σ2 → σ3 → τ may be written as A→ B→ τ, where A = (τ1, τ2, τ3)
and B = (σ1, σ2, σ3).

27

Init : [ZeroK(α)→ Cell(a1, q0, α, α) ∩ Tape1(α)→ Tape] ∩ [• → • → •]
initi : [ZeroK(γ)→ SuccK(α, β)→ Tapei+1(β) ∩ Cell(ai+1, q0, γ, β)→ Tapei(α)] ∩

[ZeroK(γ)→ SuccK(α, β)→ Cell(η, q0, δ, ε)→ Cell(η, q0, δ, ε)] ∩
[• → • → • → •] (for all i < n)

initn : [ZeroK(γ)→ SuccK(α, β)→ Tapen(β) ∩ Cell(, q0, γ, β) → Tapen(α)] ∩
[ZeroK(γ)→ SuccK(α, β)→ Cell(η, q0, δ, ε)→ Cell(η, q0, δ, ε)] ∩
[• → • → • → •]

finit : [MaxK(α)→ • → Tapen(α)] ∩
[MaxK(α)→ Cell(η, q0, δ, ε)→ Cell(η, q0, δ, ε)] ∩ [• → • → •]

Figure 5.3: Initial configuration under construction

Given q and b, let ∆(b, q) = {(ci, pi, hi) | i = 1, . . . , r}. By Vqbi(δ) and Uqbi(α, δ, γ) we
abbreviate triples of types used to represent the transition defined by (ci, pi, hi). The role
of Vqbi(δ) is to encode the action at the presently scanned tape cell, while Uqbi(α, δ, γ) applies
to all other tape cells. Assume first that hi = l. Then we define:

Vqbi(δ) = (SuccK(β, δ), DiffK(ξ, ζ), Cell(ci, pi, β, δ)),
Uqbi(α, δ, γ) = (SuccK(β, δ), DiffK(γ, δ), Cell(α, pi, β, γ)).

If hi = r then the definition is altered as follows:

Vqbi(δ) = (SuccK(δ, β), DiffK(ξ, ζ), Cell(ci, pi, β, δ)),
Uqbi(α, δ, γ) = (SuccK(δ, β), DiffK(γ, δ), Cell(α, pi, β, γ)).

Now, if q is an existential state then for every i ≤ r there is a combinator

Stepqbi : [Vqbi(δ) → Cell(b, q, δ, δ)] ∩
[Uqbi(α, δ, γ)→ Cell(α, q, δ, γ)] ∩
[•3 → •]

For universal q, we declare one combinator Stepqb:

Stepqb : [Vqb1(δ) → · · · → Vqbr(δ) → Cell(b, q, δ, δ)] ∩
[Uqb1(α, δ, γ)→ · · · → Uqbr(α, δ, γ)→ Cell(α, q, δ, γ)] ∩
[•3 → · · · → •3 → •]

Properties of the coding

We now collect the main properties of our coding. The first two lemmas state that our numeral
system works properly.

28

Lemma 20 For every k ≤ K there are terms Zerok, Maxk, Numk, Diff k, Succk, such that for all types
σ and τ:

1. If σ = 〈 0 〉k then Γ `K Zerok : Zerok(σ) ∩ • .

2. If σ = 〈 expk+1(n)− 1 〉k then Γ `K Maxk : Maxk(σ) ∩ • .

3. If σ ∈ Nk then Γ `K Numk : Numk(σ) ∩ • .

4. If σ, τ ∈ Nk, and JσK 6= JτK then Γ `K Diff k : Diffk(σ, τ) ∩ • .

5. If σ, τ ∈ Nk, and JσK+ 1 = JτK then Γ `K Succk : Succk(σ, τ) ∩ • .

Proof: Beginning with k = 0, we have Num0 = N0(n2
0(n

3
0(. . . (nn−1

0 (nn
0)) . . .))), Zero0 = Z0,

Max0 = M0, Diff 0 = D0d0Num0Num0, and Succ0 = S0Num0Num0. Take max = expk+1(n)
and for k ≥ 0 define Numk+1 = Nk+1B((nk+1BSucck)

max−2(n′k+1BSucckMaxk))Zerok, Zerok+1 =

Zk+1Numk+1(z
max−1
k+1 (z′k+1)), and Maxk+1 = Mk+1Numk+1(m

max−1
k+1 (m′k+1)). Now we can define

successor Succk+1 = Sk+1((sk+1Succk)
max−2(s′k+1MaxkSucck))Zerok, and the last term we need

is Diff k+1 = Dk+1dk+1Numk+1Numk+1. ut

Lemma 21 For every k ≤ K and every e:

1. If Γ `K e : Zerok(σ) ∩ • then σ = 〈 0 〉k.

2. If Γ `K e : Maxk(σ) ∩ • then σ = 〈 expk+1(n)− 1 〉k.

3. If Γ `K e : Numk(σ) ∩ • then σ ∈ Nk.

4. If Γ `K e : Diffk(σ, τ) ∩ • then σ, τ ∈ Nk, and JσK 6= JτK.

5. If Γ `K e : Succk(σ, τ) ∩ • then σ, τ ∈ Nk, and JσK+ 1 = JτK.

Proof: The proof is by induction with respect to k, and we show the five claims in the order
of their numbers. Of the ten possible cases we consider Γ `K e : Numk+1(σ) ∩ • as an example.
It follows from Lemma 19 that e = Nk+1e1e2e3, and σ = S((β → γ) ∩ α) and we can derive
Γ `K e1 : Bit(S(γ)) ∩ •, Γ `K e2 : nk+1(S(β → γ), S(α)) ∩ •, and Γ `K e3 : Zerok+1(S(β)) ∩ •,
for some S. Then S(β) = 〈 0 〉k and S(γ) is 0 or 1. We prove by induction that Γ `K e′ :
nk+1(ϕ, τ) implies ϕ = 〈 i 〉k → ϕ′ and τ =

⋂
j>i〈 j 〉k → bj, for some i, and conclude that

σ =
⋂

j≥0〈 j 〉k → bj, i.e., that σ is indeed a numeral. ut
Let C = wqw′ be a configuration of our machine M. Assume that w = b0 . . . bh−1 and

w′ = bh . . . bexpK+1(n)−1. That is, the address of the currently scanned tape cell is h. We take the
following type to be the encoding of C:

[C] =

expK+1(n)−1⋂
i=0

Cell(bi, q, 〈h〉K, 〈i〉K).

Now let C0 be the initial configuration for input a1 . . . an. (Thus bi = ai+1, for i < n.)

29

Lemma 22 The intersection Tape∩ • is inhabited in Γ iff so is [C0] ∩ •.

Proof: Suppose that Γ ` e : [C0] ∩ • . If Ti = initiZeroKSuccK, for i = 1, . . . , n, then

Γ ` InitZeroK(T1(T2(· · · (Tn−1(Tm−n
n (finitMaxK e))) · · ·))) : Tape∩ • .

On the other hand, if Γ ` e : Tape ∩ • then e = xe1 . . . em, where x is m-ary (Lemma 18).
Since Γ ` e : Tape, the only possibility is that e = Init e1e2 , where Γ ` e1 : ZeroK(〈 0 〉K)
and Γ ` e2 : Tape1(〈 0 〉K) ∩ Cell(a1, q0, 〈 0 〉K, 〈 0 〉K 〉. We prove by induction wrt r that e2 =
T1(T2(· · · (e′) · · ·)), where e′ has type • ∩ Tape`(〈 r 〉) ∩ ⋂

i≤r Cell(bi, q0, 〈 0 〉, 〈 i 〉), and ` =
min{r + 1, n}. For r = expK+1(n)− 1, term e′ is of type • ∩ Tapen(〈 r 〉K) ∩ [C0]. ut

Lemma 23 A configuration C is eventually accepting iff Γ ` [C] ∩ •.

Proof: The “only if” part goes by induction with respect to the definition of acceptance. If C
is an accepting configuration (universal without successors) then we have a declaration

Stepqab : Cell(b, qa, δ, δ) ∩ Cell(α, qa, δ, γ) ∩ •,

for appropriate b, whence Γ ` Stepqab : [C] ∩ •. Let C = wqbw′ be existential, with q at
address t. If C → C ′, with C ′ eventually accepting then, by the induction hypothesis, [C ′] ∩
• is inhabited. Assume for example that C ′ is obtained from C using a triple (ci, pi, hi) ∈
∆(b, q), with hi = l. Then [C ′] differs from [C] in that we have Cell(ci, pi, 〈 t− 1 〉, 〈 t 〉) instead
of Cell(b, q, 〈 t 〉, 〈 t 〉) and Cell(bj, pi, 〈 t − 1 〉, 〈 j 〉) instead of Cell(bj, q, 〈 t 〉, 〈 j 〉), for all j 6= t.
It follows that Γ ` StepqbiSucckDiff k e : [C]∩ •, where Succk and Diff k are defined as in Lemma
20 for appropriate k and e is an inhabitant of [C ′] ∩ •.

In the universal case, we build an inhabitant of [C]∩ • as StepqbSucckDiff k e1 . . . SucckDiff k er,
where Succk and Diff k are as above e1, . . . , er prove the codes of all successor configurations.

The proof from right to left is by induction with respect to length of inhabitants. Let Γ ` e :
[C] ∩ •. If e is a single combinator then e = Stepqab, by Lemma 19. Otherwise e = xe1 . . . em,
for an m-ary x. It is possible that e = initie0e1e2 or finite1e2, but then e2 also proves [C] ∩ •.
Therefore the shortest inhabitant must begin with Stepqbi or Stepqb, and we proceed as in the
proof of Lemmas 21 and 22, using Lemma 19 as a basic tool. ut

Theorem 24 For every k ≥ 0, the relativized inhabitation problem for bclk(→,∩) is complete in
(k+2)-Exptime.

Proof: By a routine padding argument1 it suffices to prove that the halting problem for
expk+1(n)-space bounded ATM’s is reducible to inhabitation in bclk(→,∩). The latter claim
follows from Lemmas 22 and 23: to determine if M accepts the input it is enough to ask if
Γ ` • ∩ Tape. ut

1 If L ∈ Dtime(expk+1(p(n))) then L ≤log {w#p(n)−|w| | w ∈ L} ∈ Dtime(expk+1(n)).

30

B I B L I O G R A P H Y

[1] Barendregt, H., Coppo, M., and Dezani-Ciancaglini, M. A filter lambda model and
the completeness of type assignment. Journal of Symbolic Logic 48, 4 (1983), 931–940.

[2] Freeman, T., and Pfenning, F. Refinement types for ML. In ACM Conference on Program-
ming Language Design and Implementation (PLDI) (1991), ACM, pp. 268–277.

[3] Gladstone, M. D. Some ways of constructing a propositional calculus of any required
degree of unsolvability. Transactions of the American Mathematical Society 118 (1965), 195–
210.

[4] Hindley, J. R. The simple semantics for Coppo-Dezani-Sallé types. In International Sym-
posium on Programming (1982), M. Dezani-Ciancaglini and U. Montanari, Eds., vol. 137 of
LNCS, Springer, pp. 212–226.

[5] Hindley, J. R., and Seldin, J. P. Lambda-calculus and Combinators, an Introduction. Cam-
bridge University Press, 2008.

[6] Kuśmierek, D. The inhabitation problem for rank two intersection types. In TLCA (2007),
S. Ronchi Della Rocca, Ed., vol. 4583 of LNCS, Springer, pp. 240–254.

[7] Linial, L., and Post, E. L. Recursive unsolvability of the deducibility, Tarski’s com-
pleteness and independence of axioms problems of propositional calculus. Bulletin of the
American Mathematical Society 55 (1949), 50.

[8] Papadimitriou, C. H. Computational Complexity. Addison-Wesley, 1994.

[9] Rehof, J., and Urzyczyn, P. Finite combinatory logic with intersection types. In TLCA
(2011), C.-H. L. Ong, Ed., vol. 6690 of Lecture Notes in Computer Science, Springer, pp. 169–
183.

[10] Singletary, W. E. Recursive unsolvability of a complex of problems proposed by Post.
Journal of the Faculty of Science, University of Tokyo 14 (1967), 25–58.

[11] Singletary, W. E. Many-one degrees associated with partial propositional calculi. Notre
Dame Journal of Formal Logic XV, 2 (1974), 335–343.

[12] Statman, R. Intuitionistic propositional logic is polynomial-space complete. Theoretical
Computer Science 9 (1979), 67–72.

31

Forschungsberichte
der Fakultät für Informatik

der Technischen Universität Dortmund

ISSN 0933-6192

Anforderungen an:
Dekanat Informatik | TU Dortmund

D-44221 Dortmund

	Abstract
	Contents
	Introduction
	Preliminaries
	Bounded Combinatory Logic
	Simple types, bclk()
	Lower bound for intersection types
	Bibliography

