
T E C H N I C A L R E P O RT S I N C O M P U T E R S C I E N C E

Technical University of Dortmund

Using Inhabitation in Bounded Combinatory Logic with Intersection Types
for Composition Synthesis (Extended Version)

Boris Düdder
Technical University of Dortmund
Department of Computer Science
boris.duedder@cs.tu-dortmund.de

Moritz Martens
Technical University of Dortmund
Department of Computer Science
moritz.martens@cs.tu-dortmund.de

Jakob Rehof
Technical University of Dortmund
Department of Computer Science
jakob.rehof@cs.tu-dortmund.de

Paweł Urzyczyn
University of Warsaw

Institute of Informatics
urzy@mimuw.edu.pl

(Partly supported by grant N N206 355836 from the Ministry of Science and Higher Education)

Number: 842

October 2012

Technical University of Dortmund — Department of Computer Science
Otto-Hahn-Str. 14, 44227 Dortmund

A B S T R A C T

We describe ongoing work on a framework for automatic composition synthesis from a reposi-
tory of software components. This work is based on combinatory logic with intersection types.
The idea is that components are modeled as typed combinators, and an algorithm for inhab-
itation — is there a combinatory term e with type τ relative to an environment Γ? — can
be used to synthesize compositions. Here, Γ represents the repository in the form of typed
combinators, τ specifies the synthesis goal, and e is the synthesized program. We illustrate our
approach by examples, including an application to synthesis from GUI-components.

2

C O N T E N T S

1 Introduction 5

2 Inhabitation in Finite and Bounded Combinatory Logic 7

3 Synthesis from Component Repositories 11

3.1 Basic principles 11

3.2 An example repository 12

4 Applications to GUI synthesis 17

4.1 Protocol-Based Synthesis for Windowing Systems 17

4.2 GUI Synthesis from a Repository 18

5 Implementation 23

6 Related work 25

7 Conclusion and further work 27

bibliography 27

3

1I N T R O D U C T I O N

In this paper we describe ongoing work to construct and apply a framework for automatic
composition synthesis from software repositories, based on inhabitation in combinatory logic
with intersection types. We describe the basic idea of type-based synthesis using bounded
combinatory logic with intersection types and illustrate an application of the framework to the
synthesis of graphical user interfaces (GUIs). Although our framework is under development
and hence results in applications to synthesis are still preliminary, we hope to illustrate an
interesting new approach to type-based synthesis from component repositories.

In a recent series of papers [15, 16, 5] we have laid the theoretical foundations for understand-
ing algorithmics and complexity of decidable inhabitation in subsystems of the intersection
type system [3]. In contrast to standard combinatory logic where a fixed basis of combinators
is usually considered, the inhabitation problem considered here is relativized to an arbitrary
environment Γ given as part of the input. This problem is undecidable for combinatory logic,
even in simple types, see [5]. We have introduced finite and bounded combinatory logic with
intersection types in [15, 5] as a possible foundation for type-based composition synthesis.
Finite combinatory logic (abbreviated fcl) [15] arises from combinatory logic by restricting com-
binator types to be monomorphic, and k-bounded combinatory logic (abbreviated bclk) [5] is
obtained by imposing the bound k on the depth of types that can be used to instantiate poly-
morphic combinator types. It was shown that relativized inhabitation in finite combinatory
logic is Exptime-complete [15], and that k-bounded combinatory logic forms an infinite hier-
archy depending on k, inhabitation being (k + 2)-Exptime-complete for each k ≥ 0. In this
paper, we stay within the lowest level of the hierarchy, bcl0. We note that, already at this level,
we have a framework for 2-Exptime-complete synthesis problems, equivalent in complexity to
other known synthesis frameworks (e.g., variants of temporal logic and propositional dynamic
logic).

In positing bounded combinatory logic as a foundation for composition synthesis, we con-
sider the inhabitation problem: Given an environment Γ of typed combinators and a type τ,
does there exist a combinatory term e such that Γ ` e : τ? For applications in synthesis, we
consider Γ as a repository of components represented only by their names (combinators) and
their types (intersection types), and τ is seen as the specification of a synthesis goal. An inhab-
itant e is a program obtained by applicative combination of components in Γ. The inhabitant
e is automatically constructed (synthesized) by the inhabitation algorithm. For applications to
synthesis, where the repository Γ may vary, the relativized inhabitation problem is the natural
model.

5

2I N H A B I TAT I O N I N F I N I T E A N D B O U N D E D C O M B I N AT O RY L O G I C

We state the necessary notions and definitions for finite and bounded combinatory logic with in-
tersection types and subtyping [15, 5]. We consider applicative terms ranged over by e, etc. and
defined as

e ::= x | (e e′),

where x, y and z range over a denumerable set of variables also called combinators. As usual,
we take application of terms to be left-associative. Under these premises any term can be
uniquely written as xe1 . . . en for some n ≥ 0. Sometimes we may also write x(e1, . . . , en)
instead of xe1 . . . en. Types, ranged over by τ, σ, etc. are defined by

τ ::= a | τ → τ | τ ∩ τ

where a, b, c, . . . range over atoms comprising type constants from a finite set A, a special con-
stant ω, and type variables from a disjoint denumerable set V ranged over by α, β, γ, . . . We
denote the set of all types by T. As usual, intersections are idempotent, commutative, and as-
sociative. Notationally, we take the type-constructor→ to be right-associative. A type τ ∩ σ is
called an intersection type or intersection [14, 3] and is said to have τ and σ as components. We
sometimes write

⋂n
i=1 τi for an intersection with n ≥ 1 components. If τ = τ1 → . . .→ τn → σ

we write σ = tgtn(τ) and τi = argi(τ) for i ≤ n and we say that σ is a target type of τ and τi
are argument types of τ. A type of the form τ = τ1 → . . . → τn → a with a 6= ω an atom is
called a path of length n. A type is organized if it is an intersection of paths. For every type τ
there is an equivalent organized type τ̄ that is computable in polynomial time [16]. Therefore,
in the following we assume all types to be organized. For σ ∈ T we denote by Pn(σ) the
set of all paths of length greater than or equal to n in σ and by ‖ σ ‖ the path length of σ
which is defined to be the maximal length of a path in σ. Define the set T0 of level-0 types by
T0 = {⋂i∈I ai|ai an atom}. Thus, level-0 types comprise of atoms and intersections of such.
We write T0(Γ, τ) to denote the set of level-0 types with atoms from Γ and τ (always including
the constant ω). A substitution is a function S : V→ T0 such that S is the identity everywhere
but on a finite subset of V. We tacitly lift S to a function on types, S : T → T, by homomor-
phic extension. A type environment Γ is a finite set of type assumptions of the form x : τ.
Intersection types come with a natural notion of subtyping ≤ as defined in [3] and used in
the systems of [15, 5]. Subtyping includes the axiom τ1 ∩ τ2 ≤ τi and therefore contains the
intersection elimination rule. The subtyping relation is decidable in polynomial time [15].

The type rules for 0-bounded combinatory logic with intersection types and subtyping, denoted
bcl0(∩,≤), as presented in [5], are given in Figure 2.1. The bound 0 is enforced by the fact that
only substitutions S mapping type variables to level-0 types in T0 are allowed in rule (var). In

7

[S : V→ T0]

Γ, x : τ ` x : S(τ)
(var)

Γ ` e : τ → τ′ Γ ` e′ : τ

Γ ` (e e′) : τ′
(→E)

Γ ` e : τ1 Γ ` e : τ2

Γ ` e : τ1 ∩ τ2
(∩I)

Γ ` e : τ τ ≤ τ′

Γ ` e : τ′
(≤)

Figure 2.1: bcl0(∩,≤)

effect, bcl0 allows a limited form of polymorphism of combinators in Γ, where type variables
can be instantiated with atomic types or intersections of such. Finite combinatory logic with
intersection types and subtyping, denoted fcl(∩,≤), as presented in [15], is the monomorphic
restriction where the substitutions S in rule (var) of Figure 2.1 are required to be the identity
and hence simplifies to the axiom Γ, x : τ ` x : τ.

We consider the relativized inhabitation problem:

Given an environment Γ and a type τ, does there exist an applicative term e such that Γ ` e : τ?

We sometimes write Γ ` ? : τ to indicate an inhabitation goal. In [15] it is shown that deciding
inhabitation in fcl(∩,≤) is Exptime-complete. The lower bound is by reduction from the
intersection non-emptiness problem for finite bottom-up tree automata, and the upper-bound
is by constructing a polynomial space bounded alternating Turing machine (ATM) [2]. In [5]
it is shown that k-bounded combinatory logic (where substitutions are allowed in rule (var)
mapping type variables to types of depth at most k) is (k + 2)-Exptime-complete for every
k ≥ 0, and hence the lowest level of the bounded hierarchy bcl0(∩,≤) is 2-Exptime-complete.
The lower bound for bcl0 is by reduction from acceptance of an exponential space bounded
ATM.

The 2-Exptime (alternating exponential space) algorithm is shown in Figure 2.2. In Fig-
ure 2.2 we use shorthand notation for ATM-instruction sequences starting from existential
states (choose . . .) and instruction sequences starting from universal states (forall(i = 1 . . . n) si).
A command of the form choose x ∈ P branches from an existential state to successor states
in which x gets assigned distinct elements of P. A command of the form forall(i = 1 . . . n) si
branches from a universal state to successor states from which each instruction sequence si
is executed. The machine is exponential space bounded, because the set of substitutions
Var(Γ, τ)→ T0(Γ, τ) is exponentially bounded. We refer to [5] for further details.

8

Input : Γ, τ

1 // loop
2 choose (x : σ) ∈ Γ;
3 σ′ :=

⋂{S(σ) | S : Var(Γ, τ)→ T0(Γ, τ)};
4 choose n ∈ {0, . . . , ‖σ′ ‖};
5 choose P ⊆ Pn(σ′);

6 if (
⋂

π∈P tgtn(π) ≤ τ) then

7 if (n = 0) then accept;
8 else

9 forall(i = 1 . . . n)
10 τ :=

⋂
π∈P argi(π);

11 goto line 2;
12 else reject;

Figure 2.2: Alternating Turing machineM deciding inhabitation for bcl0(∩,≤)

9

3S Y N T H E S I S F R O M C O M P O N E N T R E P O S I T O R I E S

In this section we briefly summarize some main points of our methodology for composition
synthesis, and we illustrate some of the main principles by an idealized example (the reader
might want to take a preliminary look at the example in Section 3.2 first). We should emphasize
that we only aim at an intuitive presentation of the general idea in broad outline, and there are
many further aspects to our proposed method that cannot be discussed here for space reasons.

3.1 basic principles

Semantic specification

It is well known that intersection types can be used to specify deep semantic properties in the
λ-calculus. The system characterizes the strongly normalizing terms [14, 3], the inhabitation
problem is closely related to the λ-definability problem [18, 19], and our work on bounded
combinatory logic [15, 5] shows that k-bounded inhabitation can code any exponential level
of space bounded alternating Turing machines, depending on k. Many existing applications
of intersection types testify to their expressive power in various applications. Moreover, it is
simple to prove but interesting to note that we can specify any given term e uniquely: there is
an environment Γe and a type τe such that e is the unique term with Γe ` e : τe (see [15]).

A type-based, taxonomic approach

It is a possible advantage of the type-based approach advocated here (in comparison to, e.g.,
approaches based on temporal logic) that types can be naturally associated with code, because
application programming interfaces (APIs) already have types. In our applications, we think
of intersection types as hosting, in principle, a two-level type system, consisting of native types
and semantic types. Native types are types of the implementation language, whereas semantic
types are abstract, application-dependent conceptual structures, drawn, e.g., from a taxonomy
(domain ontology). For example, we might consider a specification

F : ((real× real) ∩ Cart→ (real× real) ∩ Pol) ∩ Iso

where native types (real, real × real, . . .) are qualified, using intersections with semantic
types (in the example, Cart, Pol, Iso) expressing (relative to a given conceptual taxonomy) inter-
esting domain-specific properties of the function (combinator) F — e.g., that it is an isomor-
phism transforming Cartesian to polar coordinates. More generally, we can think of semantic

11

types as organized in any system of finite-dimensional feature spaces (e.g., Cart, Pol are fea-
tures of coordinates, Iso is a feature of functions) whose elements can be mapped onto the
native API using intersections, at any level of the type structure.

Level 0-bounded polymorphism

The main difference between fcl and bcl0 lies in succinctness of bcl0. For example, consider
that we can represent any finite function f : A→ B as an intersection type τf =

⋂
a∈A a→ f (a),

where elements of A and B are type constants. Suppose we have combinators (Fi : τfi
) ∈

Γ, and we want to synthesize compositions of such functions represented as types (in some
of our applications they could, for example, be refinement types [7]). We might want to
introduce composition combinators of arbitrary arity, say g : (A → A)n → (A → A). In the
monomorphic system, a function table for g would be exponentially large in n. In bcl0, we
can represent g with the single declaration G : (α0 → α1) → (α1 → α2) → · · · → (αn−1 →
αn)→ (α0 → αn) in Γ. Through level-0 polymorphism, the action of g is thereby fully specified.
Generally, the level bcl0 is already very expressive, as we can code arbitrary exponential space
bounded alternating Turing machines at that level [5].

Typed repositories as composition logic programs

When considering the inhabitation problem Γ ` ? : τ as a foundation for synthesis, it may be
useful to think of Γ as a form of generalized logic program, broadly speaking, along the lines
of the idea of proof theoretical logic programming languages proposed by Miller et. al. [13].
Under this viewpoint, solving the inhabitation problem Γ ` ? : τ means evaluating the pro-
gram Γ against the goal τ: each typed combinator F : σ in Γ names a single logical “rule" (type
σ) in an implicational logic, and the repository Γ (a collection of such rules) constitutes a logic
“program", which, when given a goal formula τ (type inhabitation target), determines the set
of solutions (the set of inhabitants). In other words, the “rule" (type) of a combinator expresses
how the combinator composes with other combinators and how its use contributes to goal res-
olution in the wider “program" (repository, Γ). Indeed, we can view the search procedure of
the inhabitation algorithm shown in Figure 2.2 as an operational semantics for such programs.

3.2 an example repository

We consider a simple, idealized example to illustrate some key ideas in synthesis based on
bounded combinatory logic. Consider the section of a repository of functions shown in Fig-
ure 3.1, where the native API of a tracking service is given as a type environment consisting of
bindings f : T where f is the name of a function (combinator), and T is a native (implementa-
tion) type. We can think of the native repository as a Java API, for example, where the native
type R abbreviates the type real.

12

The intended meaning and use of the repository is as follows. The function Tr can be
called with no arguments and returns a data structure of type D((R, R), R, R) which indicates
the position of the caller at the time of call and the temperature at that position and that time.
Thus, the function Tr could be used by a moving object to track itself and its temperature as
it moves. The tracking service might be useful in an intelligent logistics application, where
an object (say, a container) keeps track of its own position (coordinates at a given point in
time) and condition (temperature). Thus, the first component of the structure D (a pair of real
numbers) gives the 2-dimensional Cartesian coordinate of the caller at the time of call, the
second component (a real number) indicates the time of call, and the third component (a real
number) indicates the temperature.

In addition to the tracking function Tr the repository contains a number of auxiliary func-
tions which can be used to project different pieces of information from the data structure D,
with pos returning the position (coordinate and time), cdn projects the coordinates from the
components of a position, fst and snd project components of a coordinate, and tmp projects
the temperature. Finally, there are conversion functions, cc2pl and cl2fh, which convert from
Cartesian to polar coordinates and from Celsius to Fahrenheit, respectively.

Tr : ()→ D((R, R), R, R)
pos : D((R, R), R, R)→ ((R, R), R)
cdn : ((R, R), R)→ (R, R)
fst : (R, R)→ R

snd : (R, R)→ R

tmp : D((R, R), R, R)→ R

cc2pl : (R, R)→ (R, R)
cl2fh : R→ R

Figure 3.1: Section of repository implementing a tracking service (native API)

Now, the problem with the standard, native API shown in Figure 3.1 is that it does not
express any of the semantics of its intended use as described above. The basic idea behind
combinatory logic synthesis with intersection types is that we can use intersection types to super-
impose conceptual structure onto the native API in order to express semantic properties. In order to
do so, we must first specify a suitable conceptual structure to capture the intended semantics.
Figure 3.2 shows one such possible structure, which is intended to capture the semantics ex-
plained informally for our example above. The structure is given in the form of a taxonomic
tree, the nodes of which are semantic type names, and where dotted lines indicate structure con-
tainment (for example, elements of the semantic type TrackData contain elements of semantic
type Pos and Temp), and solid lines indicate subtyping relationships (for example, Cart and
Polar are subtypes of Coord). We are assuming a situation in which certain semantic types can
be represented in different ways (as is commonly the case), e.g., we have Time either as GPS

13

Time (Gpst) or as Universal Time (Utc), we have temperature (Temp) either in Celsius (Cel) or
in Fahrenheit (Fh), and coordinates can be either polar or Cartesian.

TrackData

f f f f f f f f
UUUUU

Pos

e e e e e e e e e e e

SSSSS Temp
��� <<<

Coord
nnnnnn

TTTTTTTTT Time
}}} JJJJJ Cel Fh

Cart
�

� 9
9 Polar

y
y C

C Gpst Utc

Cx Cy Radius Angle

Figure 3.2: Semantic structures

Γ = {
Tr : ()→ D((R, R) ∩ Cart, R ∩ Gpst, R ∩ Cel),
pos : D((R, R) ∩ α, R ∩ β, R)→ ((R, R) ∩ α, R ∩ β) ∩ Pos,
cdn : ((R, R) ∩ α, R) ∩ Pos→ (R, R) ∩ α,
fst : ((R, R) ∩ Coord→ R) ∩

(Cart→ Cx) ∩ (Polar→ Radius),
snd : ((R, R) ∩ Coord→ R) ∩

(Cart→ Cy) ∩ (Polar→ Angle),
tmp : D((R, R), R, R ∩ γ)→ R ∩ γ,
cc2pl : (R, R) ∩ Cart→ (R, R) ∩ Polar,
cl2fh : R ∩ Cel→ R ∩ Fh
}

Figure 3.3: Repository with semantic specifications

In Figure 3.3 we show the repository of Figure 3.1 with semantic types superimposed onto
the native API using intersection types. The superposition of semantic information can be
considered as an annotation on the native API. As can be seen, the tracking combinator Tr

uses a representation in which coordinates are Cartesian, time is GPS, and temperature is
Celsius. Level-0 polymorphic type variables (α, β, γ) are used to succinctly capture semantic
information flow, e.g., the combinator pos projects a position (Pos) from a D-typed argument
while preserving the semantic information attached to the component types (α standing for

14

the semantic qualification of the coordinate component, β for that of the time component).
The types should be readily understandable given the previous explanation of the intended
meaning of the API. Notice how we use intersection types to refine [7] semantic types, as for
instance in the type of fst, where the type (Cart → Cx) ∩ (Polar → Radius) refines the action
of fst on the semantic type Coord.

With the semantically enriched API shown in Figure 3.3 considered as a combinatory type
environment Γ we can now ask meaningful questions that can be formalized as synthesis (in-
habitation) goals. For example, we can ask whether it is possible to synthesize a computation
of the current radius (i.e., the radial distance from a standard pole at the current position) by
considering the inhabitation question Γ ` ? : Radius. Sending this question to our inhabitation
algorithm gives back the (in this case unique) solution

Γ ` fst (cc2pl (cdn (pos Tr()))) : Radius

Naturally, the expressive power and flexibility of a repository depends on how it is designed
and its type structure axiomatized (“programmed", referring to the logic programming anal-
ogy mentioned above), and we do not anticipate that our methodology will be applicable to
repositories that have not been designed accordingly.

15

4A P P L I C AT I O N S T O G U I S Y N T H E S I S

In this section we focus on the application of inhabitation in bounded combinatory logic in a
larger software engineering context. We illustrate how the inhabitation algorithm is integrated
into a framework for synthesis from a repository. We have applied the framework to various
application domains, including synthesis of control instructions for Lego NXT robots, con-
current workflow synthesis, protocol-based program synthesis, and graphical user interfaces.
Below, we will discuss the two last mentioned applications in more detail.

4.1 protocol-based synthesis for windowing systems

Based on protocols we use inhabitation to synthesize programs where the protocols deter-
mine the intended program behavior. We give a proof-of-concept example. It illustrates
how intersection types can be used to connect different types — native types and semantic
types — such that data constraints are satisfied whereas semantic types are used to control
the result of the synthesis. Figure 4.1 shows a type environment Γ which models a GUI
programming scenario for an abstract windowing system. Further, we define the subtyping
relations layoutDesktop ≤ layoutObj and layoutPDA ≤ layoutObj. In this scenario we aim
to synthesize a program which opens a window, populates it with GUI controls, allows a user-
interaction, and closes it. The typical data types like wndHnd (window handle) model API data
types. Semantic types like initialized express the current state of the protocol. Type inhabita-
tion can now be used to synthesize the program described above by asking the inhabitation
question Γ ` ? : closed. The inhabitants

e1 := closeWindow(interact(createControls(openWindow(init), layoutDesktopPC)))

e2 := closeWindow(interact(createControls(openWindow(init), layoutPDAPhone)))

share the same type closed because both layoutDesktop and layoutPDA are subtypes of layoutObj.
Both terms e1 and e2 can be interpreted or compiled to realize the intended behavior. These
terms are type correct and in addition semantically correct (cf. Wells et al. [9]), because all
specification axioms defined by the semantic types are satisfied. Generally, our lower-bound
techniques [15, 5] show how we can express very complicated protocols inside fcl(∩,≤) (al-
ternating tree automata) and bcl0(∩,≤) (exponential space bounded ATMs).

17

Γ = { init : start,
layoutDesktopPC : layoutDesktop,
layoutPDAPhone : layoutPDA,

openWindow : start→ wndHnd ∩ uninitialized,
createControls : wndHnd ∩ uninitialized→ layoutObj→ wndHnd ∩ initialized,

interact : wndHnd ∩ initialized→ wndHnd ∩ finished,
closeWindow : wndHnd ∩ finished→ closed}

Figure 4.1: Type environment Γ for protocol-based synthesis in abstract windowing system

4.2 gui synthesis from a repository

We describe the application of our inhabitation algorithm in a larger framework for component-
based GUI-development [10], thereby enabling automatic synthesis of GUI-applications from
a repository of components. The main point we wish to illustrate is the integration of inhab-
itation in a more complex software synthesis framework, where combinators may represent
a variety of objects, including code templates or abstract structures representing GUI com-
ponents, into which other components need to be substituted in order to build the desired
software application.

In our framework, GUIs are generated by synthesizing an abstract description of a GUI,
which is optimized for given constraints, from a repository of basic GUI building blocks. These
blocks are given by GUI-fragments (GUIFs), each of which is a single component realizing a
certain defined functionality. They describe reusable parts of a GUI, for example a drop-down
menu. Each GUIF is linked to a usage context vector describing the contexts the GUIF is
suitable for. The repository defines the objects and interactions that may be available in a
GUI. The repository has a hierarchical structure: The interactions are divided into abstract
interactions, alternatives, and variants. Each abstract interaction i has a set of alternatives each
of which realizes i. Each alternative a has a set of variants each of which realizes a. Each variant
v has a set of GUIFs and a set of abstract interaction nets (AINs). A GUIF directly realizes v. An
AIN is an extended Petri net, where places and transitions are labeled with objects, respectively,
interactions. Such an AIN can be understood as a structural template which fixes the available
objects (i.e., the labels of the places in the AIN), whereas the transitions are placeholders
that have to be substituted by further GUIFs or (recursively) AINs realizing the interaction
identified by the label of the transition. An AIN describes an interaction process that realizes
the corresponding variant v if all its transitions are fully realized.

We consider a repository (Figure 4.2) from a medical scenario [10, 11] for synthesizing GUIs
for web applications that support patients to keep diet after medical treatment, for example, by
helping plan a meal. The repository’s hierarchical structure is represented by layered lists con-
taining the Objects, abstract Interactions, Alternatives, and Variants. Figure 4.2 only depicts

18

O Meal
I Show Clock

A Show ClockA1

V Show ClockV1

GUIF LargeClock.gui f(s,e,i)

GUIF DesktopClock.gui fp

AIN DateTime.ain
I Show Recipe

A Show RecipeA1

V Show RecipeV1

GUIF
ShowRecipeList.gui f(s,e,i)

O Meal Plan
I View Meal

A View MealA1

V View MealV1

AIN ViewMeal.ain
I Edit Meal

A Edit MealA1

V Edit MealV1

AIN EditMeal.ain

O Recipe
I View Recipe

A View Recipe Details
V View Ingr & Prep

AIN ViewIngr&Prep.ain
I Close Recipe

A Close RecipeA1

V Close RecipeV1

GUIF CloseTouch.gui f(s,e,i)

GUIF CloseMouse.gui fp

I View Ingredients
A View IngredientsA1

V View IngredientsV1

GUIF ViewIngr.gui f(s,e,i)

GUIF IngrDetails.gui fp

I View Preparation
A View PreparationA1

V View PreparationV1

GUIF
ViewPreparation.gui f(s,e,i)

GUIF AnimPreparation.gui fp

Figure 4.2: Excerpt of repository: Planning a meal

an excerpt of the repository. In particular, there are more than one alternative to every abstract
interaction and more than one variant to every alternative. Below the variants are listed the
corresponding GUIFs or AINs. The indices of the GUIFs describe the usage contexts. A GUIF
of usage context (s, e, i), for example, is suitable for a smartphone used by elderly people with
impaired vision, whereas GUIFs of usage context p are suitable for desktop PCs. The AINs
ViewIngr&Prep.ain and ViewMeal.ain are given in Figures 4.3a, respectively 4.3b.

The synthesis problem is defined as follows: From a given AIN and a usage context vector
we want to generate an adapted AIN optimized for the usage contexts where each transition
is realized by a GUIF. Thus, given an AIN, we have to realize each of its transitions separately
for the given usage context vector. The resulting adapted AIN is called a GUIF-AIN. The
transitions of the AIN are realized by means of a recursive algorithm: If a transition labeled i
can directly be realized by a GUIF then it is substituted by the GUIF which must be executed
whenever the transition is fired. Otherwise, if there is an AIN realizing i, then i is substituted1

by the AIN, whose transitions then have to be recursively realized. Applying this procedure

1 This substitution has to obey certain rules.

19

Recipe

ViewIngredients

ViewPreparation

(a) ViewIngr&Prep.ain

Recipe

ViewRecipe

CloseRecipe

Meal

ShowRecipe

ShowClock

(b) ViewMeal.ain

Recipe

ViewIngr.guif

ViewPreparation.guif

CloseTouch.guif

Meal

ShowRecipeList.guif

HiContrastTime.guif

(s,e,i)

(s,e,i)
(s,e,i)

(s,e,i)

(s,e,i)

(c) Resolved GUIF-AIN

Figure 4.3: Example AINs

in order to realize ViewMeal.ain, results in the GUIF-AIN depicted in Figure 4.3c. The transi-
tion labeled ViewRecipe of ViewMeal.ain first has to be replaced by ViewIngr&Prep.ain whose
transitions can be directly realized by GUIFs.

This approach to synthesizing GUIs can be mapped to inhabitation questions such that from
the inhabitants a GUIF-AIN realizing the synthesis goal can be assembled. The repository
is represented by a type environment Γ and the synthesis goal by the target type for the
inhabitation. For each abstract interaction, alternative, and variant, as well as for each usage
context, we introduce a fresh type variable. Formally, let C be a finite set containing all usage
contexts. A non-empty subset C ⊆ C is a usage context vector. The hierarchical structure
of abstract interactions, alternatives, and variants is represented by subtyping. We extend ≤
with the following additional conditions: a ≤ i for each abstract interaction i and each of its
corresponding alternatives a and v ≤ a′ for each alternative a′ and each of its corresponding
variants v. The synthesis goal consisting of an AIN g with m transitions labeled k1, . . . , km
and of a usage context vector Cg is represented by asking m inhabitation questions Γ ` ? :
k j ∩

⋂
c∈Cg c, for 1 ≤ j ≤ m. Each GUIF x directly realizes the variant vx it is a child of.

Therefore, x is represented by the combinator x : vx. Because every GUIF further has a usage
context vector Cx we augment the type of the combinator x by an intersection of the usage
contexts in Cx. We get x : vx ∩

⋂
c∈Cx c ∈ Γ. An AIN f realizes the variant v f it is a child

of if all transitions of f are realized. If f includes n transitions labeled i1, . . . , in then it is
represented by the combinator f : i1 → . . . → in → v f . Thus, inhabiting v f using the
combinator f forces all arguments of f also to be inhabited in accordance with the fact that
the AIN f is realized if all its transitions are realized. From this coding, however, the question
arises how the usage context vector Cg, given by the synthesis goal, is passed to the arguments

20

of a function type. Let f : i1 → . . . → in → v f model an AIN in the repository. The
coding f : i1 ∩

⋂
c∈Cg c → . . . → in ∩

⋂
c∈Cg c → v f ∩

⋂
c∈Cg c passes Cg to all arguments. This

coding ensures that in order to inhabit the target type v f supplied with the usage context
vector

⋂
c∈Cg c using the combinator f all n arguments i1, . . . , in must also be inhabited in a way

which is optimized for the same usage context vector. This reflects the fact that in order to
construct a GUIF-AIN for a given usage context all its transitions must be realized according
to this usage context. Since we do not want to restrict the possible usage contexts of an AIN we
must provide every combinator in Γ that represents an AIN with every combination of possible
usage context vectors. With monomorphic types (fcl) this would lead to the following coding:

f : (i1 → . . .→ in → v f) ∩
⋂

c∈C
(c→ . . .→ c→ c) ∈ Γ

However, for every concrete inhabitation question, in which f occurs, only one context vector
is needed. Using polymorphism (bcl0) allows for a simple coding, because we may instan-
tiate variables with intersections representing usage context vectors. Now, we code f by the
combinator

f : i1 ∩ uc(α)→ . . .→ in ∩ uc(α)→ v f ∩ uc(α)

where uc is a type constructor for (the appropriate kind of) usage contexts. In order to inhabit
variant v f provided with a certain usage context vector (e.g., the variant should be realized for
a smart-phone used by elderly users with impaired vision), rule (var) now allows to instantiate
variable α with the intersection of the needed contexts (i.e., with s ∩ e ∩ i).

Part of the type environment ΓOM obtained by applying this translation to the example
repository in Figure 4.2 is shown in Figure 4.4. Recall that COM = {p, s, e, i} is the set of usage
contexts, which here contains usage contexts describing GUIFs that are suitable for desktop
PCs, smartphones, elderly people, respectively people with impaired vision. For example,
using rule (var) the combinator ViewIngr&Prep.ain can be given the type

ViewIngredients ∩ uc(s ∩ e ∩ i)→
ViewPreparation ∩ uc(s ∩ e ∩ i)→ ViewIngr&Prep ∩ uc(s ∩ e ∩ i)

The subtype relation is extended for abstract interactions, alternatives, and variants, as de-
scribed. The relations ViewIngr&Prep ≤ ViewRecipeDetails and ViewRecipeDetails ≤
ViewRecipe, for example, are derived from the repository.

In order to explain how to obtain a GUIF-AIN from an inhabitant consider an inhabitant e of
j ∩⋂

c∈Cj
c for an abstract interaction j. The corresponding GUIF or GUIF-AIN can recursively

be constructed as follows: If e = x where x is a combinator representing the GUIF x then a
transition labeled j is replaced by x. Otherwise, e is of the form f g1 . . . gm where f represents an
AIN with m transitions. In this case a transition labeled j is replaced by the GUIF-AIN obtained
from recursively replacing the transitions of f by the GUIFs or GUIF-AINs corresponding to

21

ΓOM = { LargeClock.guif : ShowClockV1 ∩ uc(s ∩ e ∩ i),
DesktopClock.guif : ShowClockV1 ∩ uc(p),
ShowRecipeList.guif : ShowRecipeV1 ∩ uc(s ∩ e ∩ i),
CloseTouch.guif : CloseRecipeV1 ∩ uc(s ∩ e ∩ i),
CloseMouse.guif : CloseRecipeV1 ∩ uc(p),
ViewIngr.guif : ViewIngredientsV1 ∩ uc(s ∩ e ∩ i),
IngrDetails.guif : ViewIngredientsV1 ∩ uc(p),
ViewPreparation.guif : ViewPreparationV1 ∩ uc(s ∩ e ∩ i),
AnimPreparation.guif : ViewPreparationV1 ∩ uc(p),
ViewMeal.ain : ShowRecipe ∩ uc(α)→ ShowClock ∩ uc(α)→

CloseRecipe ∩ uc(α)→ ViewRecipe ∩ uc(α)→
ViewMealV1 ∩ uc(α),

ViewIngr&Prep.ain : ViewIngredients ∩ uc(α)→
ViewPreparation ∩ uc(α)→

ViewIngr&Prep ∩ uc(α), . . .}

Figure 4.4: Part of ΓOM

the terms gk. To realize ViewMeal.ain for the context (s, e, i), for example, we ask the four
inhabitation questions

Γ ` ? : ShowRecipe ∩ uc(s ∩ e ∩ i)
Γ ` ? : ShowClock ∩ uc(s ∩ e ∩ i)
Γ ` ? : CloseRecipe ∩ uc(s ∩ e ∩ i)
Γ ` ? : ViewRecipe ∩ uc(s ∩ e ∩ i)

Figure 4.3c depicts the result.
The following section discusses (part of) a realization of this approach towards synthesizing

GUIs.

22

5I M P L E M E N TAT I O N

We presented a prototypical Prolog-implementation of the ATM shown in Figure 2.2 deciding
inhabitation in bcl0 [4]. It uses SWI-Prolog [22] and is based on a standard representation of
alternation in logic programming [20]. This algorithm is used as the core search procedure
in a synthesis-framework for GUIs that is based on the coding presented in the previous sec-
tion. It consists of a Java implementation [8, 17] based on Eclipse [6] providing a suitable
data-structure for the repository and a realization of the described translation of the repository
into the type environment Γ. It offers a graphical user interface (Figure 5.1a) which allows
for display and editing of the elements of the repository, posing synthesis-questions, and dis-
play and integration into the repository of the results. The constructed inhabitants are directly
used to generate corresponding GUIF-AINs from the AINs and GUIFs in the repository. Fig-
ure 5.1b contains an enlarged extract of the repository displayed in Figure 5.1a. It is a direct
manifestation of the repository from which components are drawn for the synthesis of a GUI.

In a first prototype the implementation did not treat usage contexts. Instead, a manual post-
filtering procedure to identify the solutions best suited for the given usage context was used.
Ignoring the usage contexts during inhabitation caused the number of solutions to be very
large (up to 20000 solutions were found in some cases for this rather small example), making
the post-filtering cumbersome if not infeasible. In a second step we incorporated a pre-filtering
of Γ removing unneeded GUIFs. This resulted in a reduction of the number of suited solutions
to approximately 500. Including usage contexts by means of intersection types and restricted
polymorphism as described in the previous section further reduced the number to only a few
solutions.

The presented implementation is only one part in a complete tool chain from design to gen-
eration for GUI-synthesis. Here we only focused on the synthesis of an abstract description of
the GUI to be generated and its interaction processes. These processes are realized by speci-
fying the necessary GUIFs. Then actual source-code for a web portal server is generated from
the synthesized processes by wiring the GUIFs together in a predefined way, thus generating
executable GUIs.

23

(a) Repository with example AIN

(b) Extract of repository

Figure 5.1: GUI for synthesis-framework

24

6R E L AT E D W O R K

We are not aware of previous work very directly related to the approach proposed here. Our
approach is broadly related in spirit to adaptation synthesis via proof counting [9, 21], where
semantic specifications at the type level are combined with proof search in a specialized proof
system. In contrast, we consider composition synthesis, and our logic (bounded combinatory
logic with intersection types) is different. The presence of intersection together with k-bounded
polymorphism yields enormous theoretical expressive power (simulation of alternating space
bounded Turing machines) and complexity (nonelementary recursive when the bound k is a
parameter). Problems of synthesis from component libraries have been investigated within
temporal logic and automata theory [12]. Our approach is fundamentally different, being
based on type theory and combinatory logic, and a direct comparison is therefore precluded.
However, the fact that both approaches lead to 2-Exptime complete problems (in our special
case of 0-bounded polymorphism) might suggest that a more detailed comparison could be an
interesting topic for further work.

25

7C O N C L U S I O N A N D F U RT H E R W O R K

We have introduced the idea of composition synthesis based on combinatory logic with in-
tersection types. Our work is ongoing, and we should emphasize that in the present paper
we could only attempt to provide a first encounter with the ideas. There are many avenues
for further work. Of foremost importance are optimization of the inhabitation algorithm and
further experiments. Although the algorithm matches the worst-case lower bound, there are
many interesting principles of optimization to be explored. Furthermore, for better scalability
and functionality we plan to reimplement the algorithm, using the .NET-framework [1], which
will allow for a much greater flexibility than the Prolog-based implementation. Experimental
application and evaluation of the ideas described here will be pursued in a number of dif-
ferent areas, including GUI synthesis, robotics, and planning. Finally, as mentioned above, a
comparison to synthesis problems framed in temporal logics could be interesting.

27

B I B L I O G R A P H Y

[1] .net development. http://msdn.microsoft.com/en-us/library/�361664.aspx.

[2] Chandra, A. K., Kozen, D. C., and Stockmeyer, L. J. Alternation. J. ACM 28 (January
1981), 114–133.

[3] Coppo, M., and Dezani-Ciancaglini., M. An extension of basic functionality theory for
lambda-calculus. Notre Dame Journal of Formal Logic 21 (1980), 685–693.

[4] Düdder, B., Martens, M., and Rehof, J. Prototype implementation of an inhabitation
algorithm for fcl(∩,≤). Presentation at Types 2011 in Bergen, Norway, September 2011.

[5] Düdder, B., Martens, M., Rehof, J., and Urzyczyn, P. Bounded Combinatory Logic. In
Computer Science Logic (CSL’12) (2012), vol. 16 of LIPIcs, Leibniz-Zentrum fuer Informatik,
pp. 243–258.

[6] Eclipse.org. Eclipse indigo (3.7) documentation.

[7] Freeman, T., and Pfenning, F. Refinement types for ML. In ACM Conference on Program-
ming Language Design and Implementation (PLDI) (1991), ACM, pp. 268–277.

[8] Garbe, O. Synthese von benutzerschnittstellen mit einem typinhabitationsalgorithmus.
Diploma thesis, Technical University of Dortmund, March 2012.

[9] Haack, C., Howard, B., Stoughton, A., and Wells, J. B. Fully automatic adaptation of
software components based on semantic specifications. In AMAST’02 (2002), vol. 2422 of
LNCS, Springer, pp. 83–98.

[10] Königsmann, T. Compositional Modelling Ansatz zur Benutzerschnittstellengenerierung am
Beispiel telemedizinischer Anwendungen. PhD thesis, Technical University of Dortmund,
2011.

[11] Königsmann, T., and Kriebel, R. Digitale gesundheitsbegleiter am beispiel der adiposi-
tas-nachsorge. In Proceedings of AAL 2008 (2008), Verband der Elektrotechnik, Elektronik,
Informationstechnik, VDE-Verlag.

[12] Lustig, Y., and Vardi, M. Y. Synthesis from component libraries. In FOSSACS (2009),
vol. 5504 of LNCS, Springer, pp. 395–409.

[13] Miller, D., Nadathur, G., Pfenning, F., and Scedrov, A. Uniform proofs as a founda-
tion for logic programming. Ann. Pure Appl. Logic 51, 1-2 (1991), 125–157.

29

http://msdn.microsoft.com/en-us/library/ff361664.aspx

[14] Pottinger, G. A type assignment for the strongly normalizable lambda-terms. In To H. B.
Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, J. Hindley and J. Seldin,
Eds. Academic Press, 1980, pp. 561–577.

[15] Rehof, J., and Urzyczyn, P. Finite combinatory logic with intersection types. In TLCA
(2011), vol. 6690 of Lecture Notes in Computer Science, Springer, pp. 169–183.

[16] Rehof, J., and Urzyczyn, P. The complexity of inhabitation with explicit intersection. In
Kozen Festschrift (2012), R. L. Constable and A. Silva, Eds., vol. LNCS 7230, pp. 256–270.

[17] Reinke, E. Konzeption und entwicklung eines tools zur modellierung von user-interface-
spezifikationsbausteinen im rahmen des ”compositional modeling”-ansatzes. Diploma
thesis, Technical University of Dortmund, 2011.

[18] Salvati, S. Recognizability in the simply typed lambda-calculus. In WoLLIC (2009),
H. Ono, M. Kanazawa, and R. J. G. B. de Queiroz, Eds., vol. 5514 of LNCS, Springer,
pp. 48–60.

[19] Salvati, S., Manzonetto, G., Gehrke, M., and Barendregt, H. Loader and urzyczyn are
logically related. In ICALP 12, Automata, Languages, and Programming - 39th International
Colloquium, Warwick, UK (2012), vol. 7392 of LNCS, Springer, pp. 364–376.

[20] Shapiro, E. Y. Alternation and the computational complexity of logic programs. J. Log.
Program. 1, 1 (1984), 19–33.

[21] Wells, J. B., and Yakobowski, B. Graph-based proof counting and enumeration with ap-
plications for program fragment synthesis. In LOPSTR 2004 (2005), S. Etalle, Ed., vol. 3573

of Lecture Notes in Computer Science, Springer-Verlag, pp. 262–277.

[22] Wielemaker, J., Schrijvers, T., Triska, M., and Lager, T. Swi-prolog. Computing Research
Repository abs/1011.5332 (2010).

30

Forschungsberichte
der Fakultät für Informatik

der Technischen Universität Dortmund

ISSN 0933-6192

Anforderungen an:
Dekanat Informatik | TU Dortmund

D-44221 Dortmund

	Abstract
	Contents
	Introduction
	Inhabitation in Finite and Bounded Combinatory Logic
	Synthesis from Component Repositories
	Basic principles
	An example repository

	Applications to GUI synthesis
	Protocol-Based Synthesis for Windowing Systems
	GUI Synthesis from a Repository

	Implementation
	Related work
	Conclusion and further work
	Bibliography

