
T E C H N I C A L R E P O RT S I N C O M P U T E R S C I E N C E

Technical University of Dortmund

Intersection Type Matching and Bounded Combinatory Logic (Extended
Version)

Boris Düdder
Technical University of Dortmund
Department of Computer Science
boris.duedder@cs.tu-dortmund.de

Moritz Martens
Technical University of Dortmund
Department of Computer Science
moritz.martens@cs.tu-dortmund.de

Jakob Rehof
Technical University of Dortmund
Department of Computer Science
jakob.rehof@cs.tu-dortmund.de

Number: 841

October 2012

Technical University of Dortmund — Department of Computer Science
Otto-Hahn-Str. 14, 44227 Dortmund

Boris Düdder, Moritz Martens, and Jakob Rehof: Intersection Type Matching and
Bounded Combinatory Logic (Extended Version), Technical Report, Department of
Computer Science, Technical University of Dortmund. © October 2012

A B S T R A C T

Bounded combinatory logic with intersection types has recently been proposed as a foundation
for composition synthesis from software repositories. In such a framework, the algorithmic
core in synthesis consists of a type inhabitation algorithm. Since the inhabitation problem is
exponential, engineering the theoretical inhabitation algorithm with optimizations is essential.
In this paper we derive several such optimizations from first principles and show how the
theoretical algorithm is stepwise transformed accordingly.

Our optimizations require solving the intersection type matching problem, which is of inde-
pendent interest in the algorithmic theory of intersection types: given types τ and σ, where
σ is a constant type, does there exist a type substitution S such that S(τ) is a subtype of
σ? We show that the matching problem is NP-complete. Membership in NP turns out to be
challenging, and we provide an optimized algorithm.

This technical report is an extended version of a paper of the same title. It contains more
detailed discussions and in particular the technical proofs of the various results.

3

C O N T E N T S

1 Introduction 7

2 Preliminaries 9

2.1 Intersection Types 9

2.2 Alternating Turing Machines 10

3 Bounded Combinatory Logic 13

3.1 Type System 13

3.2 Inhabitation 14

4 Intersection Type Matching 19

4.1 Lower Bound 19

4.2 Upper Bound 21

5 Matching-based Optimizations 35

5.1 Matching Optimization 35

5.2 Matching Optimization Using Lookahead 37

5.3 Implementation and Example 39

6 Conclusion 43

bibliography 43

5

1I N T R O D U C T I O N

Bounded combinatory logic with intersection types (bclk for short) has been proposed in
[15, 6, 5, 8] as a foundation for type-based composition synthesis from repositories of software
components. The idea is that a type environment Γ containing typed term variables (combi-
nators) represents a repository of named components whose standard types (interfaces) are
enriched with intersection types [3] to express semantic information. Composition synthesis
can be achieved by solving the relativized inhabitation (provability) problem:

Given Γ and a type τ, is there an applicative term e such that Γ `k e : τ?
Here, τ expresses the synthesis goal, and the set of inhabitants e constitute the solution space,
consisting of applicative compositions of combinators in Γ.

In contrast to standard combinatory logic [11, 4], in bclk we bound the depth k of types
used to instantiate types of combinators (k-bounded polymorphism, [6]). But rather than
considering a fixed base of combinators (for example, the base S, K), as is usual in combinatory
logic, we consider the relativized inhabitation problem where the set Γ of typed combinators is
not held fixed but given in the input. This is the natural problem to consider, when Γ models
a changing repository.

The relativized (unbounded) inhabitation problem is harder than the fixed-base problem,
being undecidable even in simple types (where the fixed-base problem is Pspace-complete
[16], see [6] for more details). But, due to the expressive power of intersection types, also
the standard fixed-base problem with intersection types is undecidable [18]. All problems
become decidable when we impose a bound k, but the bounded systems retain enormous
expressive power. The relativized inhabitation problem with intersection types, where types
are restricted to be monomorphic, is Exptime-complete [15], and the generalization to bclk
(k-bounded polymorphism) was shown to be (k + 2)-Exptime-complete [6] by encoding space
bounded alternating Turing machines (ATMs) [2].

In this paper we are concerned with principles for engineering and optimizing the theoretical
inhabitation algorithm for bclk of [6]. This algorithm is “theoretical" in so far as it matches
the (k + 2)-Exptime lower bounds but does so (as is indeed desirable in theoretical work) in
the simplest possible way, disregarding pragmatic concerns of efficiency. Since then we have
applied inhabitation in bclk to software synthesis problems [5, 8] and have begun to engineer
the algorithm. Here, we derive optimizations from first principles in the theory of bounded
combinatory logic and apply them by a stepwise transformation of the inhabitation algorithm.
It turns out that a major principle for optimization can be derived from solving the intersection
type matching problem:

Given types τ and σ where σ does not contain any type variables, is there a type substitution S with
S(τ) ≤A σ?

7

The relation ≤A denotes the standard intersection type theory of subtyping [3]. Perhaps sur-
prisingly, the algorithmic properties of this relation, clearly of independent importance in type
theory, do not appear to have been very much investigated. The (more general) problem of sub-
type satisfiability has been studied in various other theories, including simple types (see, e.g.,
[17, 14, 9, 12]), but the presence of intersection changes the problem fundamentally, and, to the
best of our knowledge, there are no tight results regarding the matching or satisfiability prob-
lem for the relation ≤A. In [15] it was shown that ≤A itself is decidable in Ptime (decidability
follows from the results of [10], but with an exponential time algorithm, see [15]). Here we
show that the matching problem is NP-complete and provide an algorithm that is engineered
for efficiency (interestingly, the NP-upper bound appears to be somewhat challenging).

This technical report accompanies the paper of the same title. It contains the technical details
and proofs.

8

2P R E L I M I N A R I E S

2.1 intersection types

Type expressions, ranged over by τ, σ, etc., are defined by τ ::= a | τ → τ | τ ∩ τ where a, b, c, . . .
range over atoms comprising of type constants, drawn from a finite set including the constant
ω, and type variables, drawn from a disjoint denumerable set V ranged over by α, β etc. We let
T denote the set of all types.

As usual, types are taken modulo commutativity (τ ∩ σ = σ∩ τ), associativity ((τ ∩ σ)∩ ρ =
τ∩ (σ∩ ρ)), and idempotency (τ ∩ τ = τ). As a matter of notational convention, function types
associate to the right, and ∩ binds stronger than →. A type environment Γ is a finite function
from term variables to types, written as a finite set of type assumptions of the form (x : τ). We
let Var(τ) and Var(Γ) denote the sets of type variables occurring in a type τ respectively in Γ.

A type τ ∩ σ is said to have τ and σ as components. For an intersection of several components
we sometimes write

⋂n
i=1 τi or

⋂
i∈I τi or

⋂{τi | i ∈ I}, where the empty intersection is identified
with ω.

The standard [3] intersection type subtyping relation ≤A is the least preorder (reflexive and
transitive relation) on T generated by the following set A of axioms:

σ ≤A ω, ω ≤A ω → ω, σ ∩ τ ≤A σ, σ ∩ τ ≤A τ, σ ≤A σ ∩ σ;

(σ→ τ) ∩ (σ→ ρ) ≤A σ→ τ ∩ ρ;

If σ ≤A σ′ and τ ≤A τ′ then σ ∩ τ ≤A σ′ ∩ τ′ and σ′ → τ ≤A σ→ τ′.

We identify σ and τ when σ ≤A τ and τ ≤A σ. The distributivity properties (σ → τ) ∩
(σ → ρ) = σ → (τ ∩ ρ) and (σ → τ) ∩ (σ′ → τ′) ≤A (σ ∩ σ′) → (τ ∩ τ′) follow from the
axioms of subtyping. Note also that τ1 → · · · → τm → ω = ω. We say that a type τ is
reduced with respect to ω if it has no subterm of the form ρ ∩ ω or τ1 → · · · → τm → ω with
m ≥ 1. It is easy to reduce a type with respect to ω, by applying the equations ρ ∩ω = ρ and
τ1 → · · · → τm → ω = ω left to right.

If τ = τ1 → · · · → τm → σ, then we write σ = tgtm(τ) and τi = argi(τ), for i ≤ m. A type
of the form τ1 → · · · → τm → a, where a 6= ω is an atom, is called a path of length m.

A type τ is organized if it is a (possibly empty) intersection of paths (those are called paths
in τ). Every type τ is equal to an organized type τ, computable in polynomial time, with a = a,
if a is an atom, and with τ ∩ σ = τ ∩ σ. Finally, if σ =

⋂
i∈I σi, then take τ → σ =

⋂
i∈I(τ → σi).

Note that premises in an organized type do not have to be organized, i.e., organized types are
not necessarily normalized as defined in [10] (in contrast to organized types, the normalized
form of a type may be exponentially large in the size of the type).

9

For an organized type σ, we let Pm(σ) denote the set of all paths in σ of length m or more.
We extend the definition to arbitrary τ by implicitly organizing τ, i.e., we write Pm(τ) as a
shorthand for Pm(τ). The path length of a type τ is denoted ‖τ‖ and is defined to be the
maximal length of a path in τ.

A substitution is a function S : V → T, such that S is the identity everywhere but on
a finite subset of V. For a substitution S, we define the support of S, written Supp(S), as
Supp(S) = {α ∈ V | α 6= S(α)}. We may write S : V → T when V is a finite subset of V

with Supp(S) ⊆ V. A substitution S is tacitly lifted to a function on types, S : T → T, by
homomorphic extension.

The following property, probably first stated in [1], is often called beta-soundness. Note that
the converse is trivially true.

Lemma 1 Let a and aj, for j ∈ J, be atoms.

1. If
⋂

i∈I(σi → τi) ∩
⋂

j∈J aj ≤A a then a = aj, for some j ∈ J.

2. If
⋂

i∈I(σi → τi) ∩
⋂

j∈J aj ≤A σ→ τ, where σ→ τ 6= ω, then the set

{i ∈ I | σ ≤A σi} is nonempty and
⋂{τi | σ ≤A σi} ≤A τ.

2.2 alternating turing machines

An alternating Turing machine (ATM) [2] is a tuple M = (Σ, Q, q0, qa, qr, ∆). The set of states
Q = Q∃] Q∀ is partitioned into a set Q∃ of existential states and a set Q∀ of universal states.
There is an initial state q0 ∈ Q, an accepting state qa ∈ Q∀, and a rejecting state qr ∈ Q∃. We
take Σ = {0, 1, }, where is the blank symbol (used to initialize the tape but not written by
the machine). The transition relation ∆ satisfies

∆ ⊆ Σ×Q× Σ×Q× {l, r},

where h ∈ {l, r} are the moves of the machine head (left and right). For b ∈ Σ and q ∈ Q, we
write ∆(b, q) = {(c, p, h) | (b, q, c, p, h) ∈ ∆}. We assume ∆(b, qa) = ∆(b, qr) = ∅, for all b ∈ Σ,
and ∆(b, q) 6= ∅ for q ∈ Q \ {qa, qr}. A configuration of M is a word wqw′ with q ∈ Q and
w, w′ ∈ Σ∗. The successor relation C ⇒ C ′ on configurations is defined as usual [13], according
to ∆. We classify a configuration wqw′ as existential, universal, accepting etc., according to q. A
configuration wqw′ is

• halting, if and only if q ∈ {qa, qr}.

• accepting if and only if q = qa.

• rejecting if and only if q = qr.

The notion of eventually accepting configuration is defined by induction:1

1 Formally we define the set of all eventually accepting configurations as the smallest set satisfying the appropriate
closure conditions.

10

• An accepting configuration is eventually accepting.

• If C is existential and some successor of C is eventually accepting, then so is C.

• If C is universal and all successors of C are eventually accepting, then so is C.

We introduce the following notation for existential and universal states. A command of the
form choose r ∈ R branches from an existential state to successor states in which r gets
assigned distinct elements of R (it implicitly rejects if R = ∅). A command of the form
forall(i = 1 . . . k) Ri branches from a universal state to successor states from which each
instruction sequence Ri is executed.

11

3B O U N D E D C O M B I N AT O RY L O G I C

We briefly present (Sect. 3.1) the systems of k-bounded combinatory logic with intersection
types, denoted bclk(→,∩), referring the reader to [6] for a full introduction. We then describe
(Sect. 3.2) our first optimization to the theoretical algorithm of [6]. The optimized algorithm is
close enough to the theoretical algorithm of [6] that we can use it to explain the latter also.

3.1 type system

For each k ≥ 0 the system bclk(→,∩) (or, bclk for short) is defined by the type assignment
rules shown in Fig. 3.1, assigning types to applicative (combinatory) terms e ::= x | (e e),
where x ranges over term variables (combinators). We assume that application associates to
the left and we omit outermost parentheses. Notice that any applicative term can be written
uniquely as x e1 . . . en. We freely use the following notation to denote the previous term,
which represents x as an n-ary function: x(e1, . . . , en). In rule (var), the condition `(S) ≤ k is
understood as a side condition to the axiom Γ, x : τ `k x : S(τ). Here, the level of a substitution
S, denoted `(S), is defined as follows. First, for a type τ, define its level `(τ) by `(a) = 0 for
a ∈ ∪V, `(τ → σ) = 1 + max{`(τ), `(σ)}, and `(

⋂n
i=1 τi) = max{`(τi) | i = 1, . . . , n}. Now

define `(S) = max{`(S(α)) | α ∈ V}. Notice that the level of a type is independent of the
number of components in an intersection.

[`(S) ≤ k]
Γ, x : τ `k x : S(τ)

(var)
Γ `k e : τ → τ′ Γ `k e′ : τ

Γ `k (e e′) : τ′
(→E)

Γ `k e : τ1 Γ `k e : τ2

Γ `k e : τ1 ∩ τ2
(∩I)

Γ `k e : τ τ ≤A τ′

Γ `k e : τ′
(≤)

Figure 3.1: Bounded combinatory logic bclk(→,∩)

A level-k type is a type τ with `(τ) ≤ k, and a level-k substitution is a substitution S with
`(S) ≤ k. For k ≥ 0, we let Tk denote the set of all level-k types. For a subset A of atomic
types, we let Tk(A) denote the set of level-k types with atoms (leaves) in the set A.

13

3.2 inhabitation

In bounded combinatory logic [6] and its use in synthesis [5, 8] we are addressing the following
relativized inhabitation problem:

Given Γ and τ, is there an applicative term e such that Γ `k e : τ?
The cause of the exponentially growing complexity of inhabitation in bclk (compared to the
monomorphic restriction [15]) lies in the need to search for suitable instantiating substitutions
S in rule (var). In [6] it is shown that one needs only to consider rule (var) restricted to
substitutions of the form S : Var(Γ)→ Tk(Atω(Γ, τ)), where Atω(Γ, τ) denotes the set of atoms
occurring in Γ or τ, together with ω. This finitizes the inhabitation problem and immediately
leads to decidability. Now, given a number k, an environment Γ and a type τ, define for
each x occurring in Γ the set of substitutions S (Γ,τ,k)

x = Var(Γ(x)) → Tk(Atω(Γ, τ)). This set,
as well as the type size, grows exponentially with k, and at the root of the (k + 2)-Exptime-
hardness result of [6] for inhabitation in bclk is the fact that one cannot bypass, in the worst
case, exploring such vast spaces of types and substitutions. However, in applications [5, 8] it is
to be expected that a complete, brute-force exploration of the sets S (Γ,τ,k)

x is unnecessary. This
is the point of departure for our optimizations of the theoretical algorithm of [6], which, for
convenience, is stated in the following. It is an (k+1)-Expspace ATM, yielding a (k+2)-Exptime

decision procedure.
The idea behind our first optimization is to show that for a type τ =

⋂
i∈I τi to satisfy τ ≤ σ,

where σ =
⋂

j∈J σj, the size of the index set I can be bounded by the size of the index set J
of σ. One might at first conjecture that it always suffices to consider an index set I where
|I| ≤ |J|. This is not true as can easily seen by considering (a → b) ∩ (a → c) ≤A a → (b ∩ c),
for example. But we show that the property holds for organized types.

Based on Lem. 1 we characterize the subtypes of a path (generalizing Lem. 3 in [6]):

Lemma 2 Let τ =
⋂

i∈I τi where the τi are paths and let σ = β1 → . . . → βn → p where p 6= ω is
an atom.

We have τ ≤A σ if and only if there is an i ∈ I with τi = α1 → . . .→ αn → p and β j ≤A αj for all
j ≤ n.

Proof: Once and for all we write
⋂

i∈I τi =
⋂

j∈J aj ∩
⋂

k∈K σk → σ′k (in particular I = J ∪ K).

⇒: We use induction over n.

n = 0: We have
⋂

i∈I τi ≤A p where p is a type constant. Lem. 1 states that there must
be a j ∈ J with aj = p.

n⇒ n + 1: Assume
⋂

i∈I τi ≤A β1 → . . . → βn+1 → p. Lem. 1 further states that the
set H = {k ∈ K|β1 ≤A σk} is non-empty and

⋂
h∈H σ′k ≤A β2 → . . . → βn+1 → p.

Note that each of the σ′k is a again a path. Therefore, we may apply the induction
hypothesis to the last inequality and we see that there is some h0 ∈ H with σ′h0

=
α2 → . . . → αn+1 → p where βl ≤A αl for all 2 ≤ l ≤ n + 1. Because h0 ∈ H we

14

Algorithm 0 Alternating Turing machine deciding inhabitation in bclk

1: Input: Γ, τ, k
2: Output: INH1 accepts iff ∃e such that Γ `k e : τ
3:

4: loop:
5: CHOOSE (x : σ) ∈ Γ;
6: σ′ :=

⋂{S(σ) | S ∈ S (Γ,τ,k)
x };

7: CHOOSE n ∈ {0, . . . ‖σ′‖};
8: CHOOSE P ⊆ Pn(σ′);
9:

10: if
⋂

π∈P tgtn(π) ≤A τ then
11: if n = 0 then
12: ACCEPT;
13: else
14: FORALL (j = 1 . . . n) τ :=

⋂
π∈P argj(π);

15: GOTO loop;
16: end if
17: else
18: FAIL;
19: end if

know that β1 ≤A σh0 . Setting α1 = σh0 , the type σh0 → σ′h0
= α1 → . . .→ αn+1 → τ

has the desired properties.

⇐: For this direction we first show by induction over n that a type α1 → . . . → αn → p with
β j ≤A αj for all j ≤ n is a subtype of β1 → . . .→ βn → p.

n = 0: There is nothing to prove because both types are equal to p.

n⇒ n + 1: We want to show α1 → . . . → αn+1 → p ≤A β1 → . . .→ βn+1 → p. Because
of Lem. 1 this inequality holds if and only if β1 ≤A α1 and α2 → . . . → αn+1 →
p ≤A β2 → . . . → βn+1 → p. The first inequality holds by assumption the second
one holds because of the induction hypothesis.

By assumption there is an i ∈ I with τi = α1 → . . . → αn → p and β j ≤A αj for
all j ≤ n. From the above we know τi ≤A β1 → . . . → βn → p and therefore also⋂

i∈I τi ≤A β1 → . . .→ βn → p.

ut

For σ =
⋂

j∈J σj (not necessarily organized), it is easy to see that one has τ ≤A σ iff for all j we
have τ ≤A σj. Using this observation together with Lem. 2 we obtain:

15

Lemma 3 Let τ =
⋂

i∈I τi and σ =
⋂

j∈J σj be organized types that are reduced with respect to ω.
We have τ ≤A σ iff there exists I′ ⊆ I with |I′| ≤ |J| and

⋂
i∈I′ τi ≤A σ.

Proof: The right-to-left implication is obvious.
Assume τ ≤A σ. This implies τ ≤A σj for all j ∈ J. Fix j ∈ J. σ is organized and we

write σj = β
j
1 → . . . → β

j
nj → pj. By the “if”-part of Lem. 2 there is an index ij ∈ I such that

τij = α
ij
1 → . . .→ α

ij
nj → pj with β

j
k ≤A α

ij
k for all 1 ≤ k ≤ nj. Set I′ := {i ∈ I|∃j ∈ J with i = ij}.

Clearly |I′| ≤ |J| holds. For every j ∈ J the “only if”-part of Lem. 2 shows
⋂

i∈I′ τi ≤A σj
because τij satisfies the condition stated. This implies

⋂
i∈I′ τi ≤A σ. ut

As shown in [6], the key to an algorithm matching the lower bound for bclk is a path lemma
([6, Lemma 11]) which characterizes inhabitation by the existence of certain sets of paths in
instances of types in Γ. The following lemma is a consequence of Lem. 3 and [6, Lemma 11].

Lemma 4 Let τ =
⋂

i∈I τi be organized and let x : σ ∈ Γ.
The following are equivalent conditions:

1. Γ `k x e1 . . . em : τ

2. There exists a set P of paths in Pm(
⋂{S(σ) | S ∈ S (Γ,τ,k)

x }) such that

a)
⋂

π∈P tgtm(π) ≤A τ;

b) Γ `k ei :
⋂

π∈P argi(π), for all i ≤ m.

3. There exists a set S ⊆ S (Γ,τ,k)
x of substitutions with |S| ≤ |I| and a set P′ ⊆ Pm(

⋂
S∈S S(σ))

of paths with |P′| ≤ |I| such that

a)
⋂

π∈P′ tgtm(π) ≤A τ;

b) Γ `k ei :
⋂

π∈P′ argi(π), for all i ≤ m.

Proof: The implication 1.⇒ 2. follows from Lemma 10 in [7].
We prove 2. ⇒ 3 : Let P be as in the condition, i.e.,

⋂
π∈P tgtm(π) ≤A τ. Lemma 3

states that there is P′ ⊆ P with |P′| ≤ |I| and
⋂

π∈P′ tgtm(π) ≤A τ. For each π ∈ P′ there

exists Sπ ∈ S (Γ,τ,k)
x such that π ∈ Pm(Sπ(σ)). Define S = {Sπ |π ∈ P′}. It is clear that

|S| ≤ |I| and that P′ ⊆ Pm(
⋂

S∈S S(σ)). Thus, 3.(a) holds. Fix i ≤ m. Because P′ ⊆ P we
have

⋂
π∈P argi(π) ≤A

⋂
π∈P′ argi(π). Since we have Γ `k ei :

⋂
π∈P argi(π), rule (≤A) yields

Γ `k ei :
⋂

π∈P′ argi(π). Therefore, 3.(b) also holds.
The implication 3.⇒ 1. follows from a suitable application of the type rules. ut

We immediately get the following corollary.

Corollary 5 (Path Lemma) Let τ =
⋂

i∈I τi be organized and let (x : σ) ∈ Γ.
The following are equivalent conditions:

16

1. Γ `k x e1 . . . em : τ

2. There exists a set S ⊆ S (Γ,τ,k)
x of substitutions with |S| ≤ |I| and a set P ⊆ Pm(

⋂
S∈S S(σ)) of

paths with |P| ≤ |I| such that

a)
⋂

π∈P tgtm(π) ≤A τ;

b) Γ `k ej :
⋂

π∈P argj(π), for all j ≤ m.

Algorithm 1 below is a direct implementation of the path lemma (Cor. 5) and therefore decides
inhabitation in bclk.

Algorithm 1 INH1(Γ, τ, k)

1: Input: Γ, τ, k — wlog: All types in Γ and τ =
⋂

i∈I τi are organized
2: Output: INH1 accepts iff ∃e such that Γ `k e : τ
3:

4: loop:
5: CHOOSE (x : σ) ∈ Γ;
6: CHOOSE S ⊆ S (Γ,τ,k)

x with |S| ≤ |I|;
7: σ′ :=

⋂{S(σ)|S ∈ S};
8: CHOOSE n ∈ {0, . . . ‖σ′‖};
9: CHOOSE P ⊆ Pn(σ′) with |P| ≤ |I|;

10:

11: if
⋂

π∈P tgtn(π) ≤A τ then
12: if n = 0 then
13: ACCEPT;
14: else
15: FORALL (j = 1 . . . n) τ :=

⋂
π∈P argj(π);

16: GOTO loop;
17: end if
18: else
19: FAIL;
20: end if

Algorithm 0 is identical to Alg. 1 but for the fact that it ignores the restrictions |S| ≤ |I| (line
6 in Alg. 1) and |P| ≤ |I| (line 9). It can be seen, from purely combinatorial considerations,
that the optimization resulting from taking these bounds into account can lead to arbitrarily
large speed-ups (when |I| is relatively small, as can be expected in practice).

17

4I N T E R S E C T I O N T Y P E M AT C H I N G

The work done in lines 5 through 9 of Alg. 1 aims at constructing paths π descending from σ
(using instantiating substitutions) such that the condition

⋂
π∈P tgtn(π) ≤A τ in line 11 is satis-

fied. Clearly, it would be an important optimizing heuristic if we could rule out uninteresting
paths π that do not contribute to the satisfaction of the condition. The earlier we can do this,
the better. So the optimal situation would be if we could somehow do it by inspecting paths
in σ very early on, i.e., right after choosing σ in line 5.

As we will show, it turns out that this can indeed be done based on a solution to the
intersection type matching problem:

Given types τ and σ where σ does not contain any type variables, is there a substitution S : V→ T

with S(τ) ≤A σ?
We shall proceed to show that this problem is NP-complete (lower and upper bound in
Sect(s). 4.1 respectively 4.2). Interestingly, the upper bound is quite challenging. It is also
worth emphasizing that the lower bound turns out to hold even when restricting the matching
problem to atomic (level-0) substitutions.

Definition 6 Let C = {τ1 ≤ σ1, . . . , τn ≤ σn} be a set of type constraints such that for every i
either σi or τi does not contain any type variables. We say that C is matchable if there is a substitution
S : V→ T such that for all i we have S(τi) ≤A S(σi). We say that S matches C.

CMATCH denotes the decision problem of whether a given set of constraints C is matchable. cMATCH
denotes the decision problem of whether a given constraint τ ≤ σ where σ does not contain any type
variables is matchable.

We sometimes denote CMATCH and cMATCH as matching problems. Furthermore, we write
S(σ) ≤A S(τ) if it is not known which of the two types contains variables, and we omit
parentheses if C is a singleton set. Note that we use ≤ to denote a formal constraint whose
matchability is supposed to be checked whereas τ ≤A σ states that τ is a subtype of σ.

4.1 lower bound

We show that intersection type matching is NP-hard by defining a reduction R from 3SAT
to CMATCH such that any formula F in 3-CNF is satisfiable iff R(F) is matchable. Let F =

c1 ∧ . . . ∧ cm where for each i we have ci = L1
i ∨ L2

i ∨ L3
i and each Lj

i is either a propositional
variable x or a negation ¬x of such a variable. For all propositional variables x, occurring in
F we define two fresh type variables called αx and α¬x. Furthermore, we assume the two type
constants 1 and 0. For a given formula F, let R(F) denote the set containing the following
constraints:

19

1. For all x in F:
(
(1→ 1)→ 1

)
∩
(
(0→ 0)→ 0

)
≤ (αx → αx)→ αx

2. For all x in F: (0→ 1) ∩ (1→ 1) ≤ αx → 1

3. For all x in F:
(
(1→ 1)→ 1

)
∩
(
(0→ 0)→ 0

)
≤ (α¬x → α¬x)→ α¬x

4. For all x in F: (0→ 1) ∩ (1→ 1) ≤ α¬x → 1

5. For all x in F: (1→ 0) ∩ (0→ 1) ≤ αx → α¬x

6. For all ci: αL1
i
∩ αL2

i
∩ αL3

i
≤ 1

It is clear that R(F) can be constructed in polynomial time.

Theorem 7 F satisfiable⇔ R(F) matchable

Proof: For the “only if”-direction let v be a valuation that satisfies F. We define a substitution
Sv as follows:

• Sv(αx) = v(x)

• Sv(α¬x) = ¬v(x)

By way of slight notational abuse the right hand sides of these defining equations represent
the truth values v(x) and ¬v(x) as types. We claim that Sv matches R(F). For the first five
constraints this is obvious. Consider a clause ci in F and the corresponding constraint in the
sixth group of constraints: v(F) = 1 implies that there is a literal Lj

i with v(Lj
i) = 1. Thus,

Sv(αLj
i
) = 1 and the constraint corresponding to ci is matched.

For the “if”-direction, from a substitution S matching R(F) we construct a satisfying val-
uation vS for F. We define vS(x) = S(αx), and show that vS is well-defined and satisfies F.
Consider a type variable αx. Using Lem. 1 it is not difficult to show that S can only match
the first constraint if S(αx) ∈ {0, 1, ω}. The second constraint, however, will not be matched if
S(αx) = ω. It is matched by the instantiations S(αx) = 0 and S(αx) = 1, though. Thus, the first
two constraints make sure that S(αx) ∈ {0, 1}. The same argument, using the third and fourth
constraint, shows S(α¬x) ∈ {0, 1}. These two observations can be used together with the fact
that the fifth constraint is matched for x to show that S(αx) = 1 if and only if S(α¬x) = 0 and
vice versa. We conclude that vS is well-defined. In order to show that it satisfies F we need to
show that for every clause ci there is a literal Lj

i with vS(Lj
i) = 1. Because S matches R(F) we

have S(αL1
i
) ∩ S(αL2

i
) ∩ S(αL3

i
) ≤A 1. Lemma 1 states that the type on the left-hand side must

have a component which is equal to 1. We already know that each of the three variables is
instantiated either to 0 or 1. Thus, at least one of them must be instantiated to 1. Therefore,
vS(ci) = 1 and vS satisfies F. ut

We immediately get the following corollary:

20

Corollary 8 CMATCH is NP-hard.

Exploiting co- and contravariance, a set C of constraints can be transformed into a single
constraint c such that C is matchable if and only if c is matchable. This yields a reduction from
CMATCH to cMATCH, hence the following corollary:

Corollary 9 cMATCH is NP-hard.

4.2 upper bound

We show that CMATCH, and thus also cMATCH, is in NP. We derive an algorithm engineered
for efficiency by a case analysis that attempts to minimize nondeterminism. We first need some
definitions:

Definition 10 We call τ ≤ σ a basic constraint if either τ is a type variable and σ does not contain
any type variables or σ is a type variable and τ does not contain any type variables.

Definition 11 Let C be a set of basic constraints.
Let α be a variable occurring in C. Let τi ≤ α for 1 ≤ i ≤ n be the constraints in C where α occurs

on the right hand side of ≤ and let α ≤ σj for 1 ≤ j ≤ m be the constraints in C where α occurs on the
left hand side of ≤. We say that C is consistent with respect to α if for all i and j we have τi ≤A σj.

C is consistent if it is consistent with respect to all variables occurring in C.

In the following we will need a lemma which formalizes the observation that a set of basic
constraints is matchable if and only if it is consistent.

Lemma 12 Let C be a set of basic constraints. C can be matched if and only if C is consistent.

Proof: In the following let α be a variable occurring in C and let τi ≤ α for 1 ≤ i ≤ n be the
constraints in C where α occurs on the right hand side of ≤ and let α ≤ σj for 1 ≤ j ≤ m be
the constraints in C where α occurs on the left hand side of ≤. We now show both directions:

⇒: Assume that C is matchable. We want to show that it is consistent. We have to show that
for all i and j we have τi ≤A σj. Because C is matchable there exists a substitution S such
that τi ≤A S(α) for 1 ≤ i ≤ n and S(α) ≤A σj for 1 ≤ j ≤ m. By transitivity of ≤A we
get τi ≤A S(α) ≤A σj for all i and j.

⇐: For the direction from right to left, let C be a set of basic constraints and let α ≤ σj for
1 ≤ j ≤ m be the constraints in C where α occurs on the left hand side of ≤. Define
the substitution SC by setting SC(α) = α, if α does not occur in C, and SC(α) =

⋂m
j=1 σj

otherwise1. Notice that the basic constraints in C do not contain any variables on one
side of ≤. If C is consistent, then we have τi ≤A σj for all i and j which is equivalent to
τi ≤A

⋂m
j=1 σj = SC(α) for all i. Thus, SC matches C.

1 Recall that empty intersections equal ω (thus, SC is well-defined even if m = 0).

21

ut

Note that it is important that we can treat variables independently in the proof, because the
basic constraints in C do not contain any variables on one side of ≤ (hence the types

⋂m
j=1 σj

contain no variables). The proof technique would not work for the satisfiability problem.
Algorithm 2 below is a nondeterministic procedure that decomposes the constraints in a set C
to be matched until we arrive at a set of basic constraints. Using the lemma above, we know
that, if and only if this set is consistent, we may conclude that C is matchable. We make the
following more detailed remarks about the algorithm:

Remark 13

1. Memoization is used to make sure that no constraint is added to C more than once.

2. Failing choices always return false.

3. The reduction with respect to ω in line 6 means, in particular, that, unless they are syntactically
identical to ω, neither τ nor σ contain any types of the form ρ1 → . . . → ρm → ω as top-level
components.

4. Line 14 subsumes the case σ = ω if I = ∅. Then c is simply removed from C, and no new
constraints are added.

5. We assume that the cases in the switch-block are mutually exclusive and checked in the given
order. Thus, we know, for example, that for the two cases in lines 19 and 30 σ is not an intersec-
tion and therefore a path. Thus, we may fix the notation in line 17. Note, though, that the index
set I for τ may be empty.

6. In line 21 the choice between the two options is made nondeterministically. The first option covers
the case where I2 ∪ I3 = ∅, i.e., all paths in τ are shorter than σ.2 The only possibility to match
such a constraint is to make sure that S(σ) = ω, which is only possible if S(a) = ω. Thus, a
must be a variable. Clearly, a cannot be a constant different from ω, and it cannot be ω either,
because then σ would have been reduced to ω in line 6 and the case in line 8 would have been
applicable.

7. The following example shows that even if I2 ∪ I3 6= ∅ it must be possible to choose the first option
in line 21: {a′ ≤ β, b → a ≤ β → α} is matchable according to the substitution {α 7→ ω, β 7→
a′}. If the algorithm were not allowed to choose the option in line 22 it would have to choose the
option in the following line which would result in the constraint set {a′ ≤ β, a ≤ α, β ≤ b}.
This set is clearly not matchable and the algorithm would incorrectly return false.

8. We assume that the nondeterministic choice in line 21 is made determinstically, choosing the first
option, whenever I2 ∪ I3 = ∅. In this case choosing the second option would always result in
false.

22

Algorithm 2 Match(C)

1: Input: C = {τ1 ≤ σ1, . . . , τn ≤ σn} such that for all i at most one of σi and τi contains
variables. Furthermore, all types have to be organized.

2: Output: true if C can be matched otherwise false
3:

4: while ∃ nonbasic constraint in C do
5: choose a nonbasic constraint c = (τ ≤ σ) ∈ C
6: reduce τ and σ with respect to ω
7: switch
8: case: c does not contain any variables
9: if τ ≤A σ then

10: C := C\{c}
11: else
12: return false
13: end if
14: case: σ =

⋂
i∈I σi

15: C := C\{c} ∪ {τ ≤ σi|i ∈ I}
16:

17: write τ =
⋂

i∈I τi,1 → . . .→ τi,mi → pi, σ = σ1 → . . .→ σm → a
18: write I1 = {i ∈ I|mi < m}, I2 = {i ∈ I|mi = m}, I3 = {i ∈ I|mi > m}
19: case: σ contains variables, τ does not contain any variables
20: if a ∈ V then
21: CHOICE:
22: 1.) C := C\{c} ∪ {ω ≤ a}
23: 2.) choose ∅ 6= I′ ⊆ I2 ∪ I3
24: C := C\{c} ∪ {σj ≤ τi,j|i ∈ I′, 1 ≤ j ≤ m}∪
25: {⋂i∈I′ τi,m+1 → . . .→ τi,mi → pi ≤ a}
26: else
27: choose i0 ∈ I2
28: C := C\{c} ∪ {σj ≤ τi0,j|1 ≤ j ≤ m} ∪ {pi0 ≤ a}
29: endif
30: case: τ contains variables, σ does not contain any variables
31: choose i0 ∈ I1 ∪ I2
32: C := C\{c} ∪ {σj ≤ τi0,j|1 ≤ j ≤ mi0} ∪ {pi0 ≤ σmi0+1 → . . .→ σm → a}
33: end switch
34: end while
35: if C is consistent then
36: return true
37: else
38: return false
39: end if

23

Lemma 14 Algorithm 2 terminates.

Proof: The reduction-step in line 6 does not increase the height of the types involved. Fur-
thermore, in every iteration of the while-loop the constraint c is either removed from C or it
is replaced by a finite number of constraints, where for each newly added constraint at least
one of the occurring types has a syntax-tree whose height is strictly smaller than the height
of the syntax-tree of one of the types in c. Thus, if the algorithm does not return false it has
to leave the while-loop after a finite number of iterations because all remaining constraints
are basic. The consistency check terminates because there can only be a finite number of basic
constraints. Thus, it only requires to check a finite number of constraints τi ≤ σj not containing
any type variables which can be done using the PTIME-procedure by [15]. ut

Next, we prove that Alg. 2 operates in nondeterministic polynomial time. We first need a series
of technical definitions and lemmas.

Definition 15 Let τ be a type. The set of arguments arg(τ) of τ is inductively defined as follows:

arg(a) = ∅

arg(
⋂
i∈I

τi) =
⋃
i∈I

arg(τi)

arg(τ′ → τ′′) = {τ′} ∪ arg(τ′) ∪ arg(τ′′)

Lemma 16 Let ρ be a type and let ρ′ be a subterm of ρ. Then arg(ρ′) ⊆ arg(ρ).

Proof: The statement directly follows from Definition 15, using a structural induction argu-
ment:

If ρ is a type constant it is clear that the statement holds. For ρ =
⋂

i∈I ρi and ρ′ =
⋂

i∈I′ ρi for
a subset I′ ⊆ I we have arg(ρ′) =

⋃
i∈I′ arg(ρi) ⊆

⋃
i∈I arg(ρi) = arg(ρ). If ρ′ is a subterm of one

of the ρi, then we know by induction that arg(ρ′) ⊆ arg(ρi) ⊆
⋃

i∈I arg(ρi) = arg(ρ). Finally, let
ρ = ρ1 → ρ2. If ρ′ = ρi for i ∈ {1, 2}, then it is clear that arg(ρ′) ⊆ {ρ1} ∪ arg(ρ1) ∪ arg(ρ2) =
arg(ρ). If ρ′ is a subterm of ρi for i ∈ {1, 2}, then an analogous induction argument as in the
previous case shows that arg(ρ′) ⊆ arg(ρ) holds. ut

Lemma 17 Let σ be a type and let ρ ∈ arg(σ) be an argument of σ. Then arg(ρ) ⊆ arg(σ).

Proof: We first show by induction that for every type τ we have arg(τ) = arg(τ). If τ = a
we have a = a and nothing has to be proved. If τ =

⋂
i∈I τi we have arg(τ) = arg(

⋂
i∈I τi) =⋃

i∈I arg(τi) =
⋃

i∈I arg(τi) = arg(
⋂

i∈I τi) = arg(τ). If τ = τ′ → τ′′ where τ′′ =
⋂

i∈I τ′′i
we have arg(τ) = {τ′} ∪ arg(τ′) ∪ arg(τ′′) = {τ′} ∪ arg(τ′) ∪ arg(τ′′) = {τ′} ∪ arg(τ′) ∪
arg(

⋂
i∈I τ′′i) = {τ′} ∪ arg(τ′) ∪⋃i∈I arg(τ′′i) =

⋃
i∈I
(
{τ′} ∪ arg(τ′) ∪ arg(τ′′i)

)
=
⋃

i∈I arg(τ′ →

2 In particular, τ = ω is allowed if furthermore I1 = ∅, as well.

24

τ′′i) = arg(
⋂

i∈I τ′ → τ′′i) = arg(τ). From arg(τ′ → τ′′) = {τ′} ∪ arg(τ′) ∪ arg(τ′′) it im-
mediately follows that for every ρ ∈ arg(σ) we have arg(ρ) ⊆ arg(σ). Together, these two
observations yield the statement of the lemma. ut

Lemma 18 Let ρ be a type occurring in a non-basic constraint considered by Alg. 2 during the exe-
cution of the while-loop. Let {τ1 ≤ σ1, . . . , τn ≤ σn} be the set of initial constraints given to the
algorithm.

There exists 1 ≤ i ≤ n such that ρ is a subterm of τi or σi or of an organized argument of τi or σi.

Proof: We prove by induction over the execution of the while-loop that every type occurring in
a nonbasic constraint in C has the desired property. The statement of the lemma then directly
follows because the algorithm only considers nonbasic constraints in C.

Before the first execution of the while-loop it is clear that the property holds for every type
occurring in a nonbasic constraint in C because C only contains initial constraints. We now
consider one execution of the while-loop. By induction we know that the property holds for
every type occurring in a nonbasic constraint in C before the execution, and we have to show
that the property also holds after the execution. If the execution of the while-block does not
return false it is always the case that one nonbasic constraint c is removed from C and possibly
some new constraints (basic and nonbasic) are added to C. Thus, it suffices to show that for
every type in the new nonbasic constraints that are added the property holds. Fix c = (τ ≤ σ)
the nonbasic constraint that is considered by the algorithm in the current execution of the
while-loop. τ and σ have the desired property. We now consider all possible cases. If it is not
clear whether a new constraint is basic or nonbasic3 we implicitly do the following arguments
only for the new nonbasic constraints that are added.

Line 8: In the block following this case no new constraint is added to C and therefore there is
nothing to prove.

Line 14: We have σ =
⋂

i∈I σi and τ ≤ σi were added for all i ∈ I. The property holds for τ.
Because the property held for σ and because every σi is a subterm of σ the property also
holds for every σi.4

Line 19: The constraints added to C in lines 22 and 25 are basic constraints (because a is a
variable). We explain why the constraints added in lines 24 and 28 have the desired
property.

We start with the constraint pi0 ≤ a that is added in line 28. pi0 is a subterm of τi0 which
itself is a subterm of τ. Thus, pi0 is a subterm of τ. Because the property holds for τ,
i.e., τ is a subterm of an initial type or of an organized argument of an initial type, the
property clearly also holds for pi0 . An analogous argument can be made for a and σ.

3 In line 15 this is the case, for example.
4 Note that I = ∅ is possible, subsuming the case σ = ω.

25

Consider σj in one of the constraints added to C in line 24. σj is an argument of σ and
we know that σ is a subterm of an initial type or of an organized argument of an initial
type. In the first case Lem. 16 shows that σj is also an argument of this initial type. Thus,
σj is an organized argument of an initial type and the property holds. In the second case
denote by ρ the organized argument of an initial type which σ is a subterm of. Because
σj is an argument of σ, Lem. 16 shows that it is also an argument of ρ. We may now use
Lem. 17 to conclude that σj is also an argument of the initial type ρ was an argument
of. Therefore, σj is an organized argument of an initial type and we are done. In order
to show that the property holds for a type τi,j in one of the constraints added to C in
line 24 we follow an analogous argument. Furthermore, the property also holds for the
types σj and τi0,j in one of the constraints added to C in line 28 with the same argument.

Line 30: The argument that the constraints added in line 32 have the desired property is com-
pletely analogous to the previous argument.

ut

Corollary 19 The while-loop of Alg. 2 is executed polynomially often in the size of the set {τ1 ≤
σ1, . . . , τn ≤ σn} of constraints initially given to the algorithm.

Proof: From Lem. 18 we know that every type occurring in a nonbasic constraint that the
algorithm may have to consider during one execution of the while-loop is a subterm of a type
occurring in an initial constraint or a subterm of an organized argument of a type occurring
in an initial constraint (we call such types initial types). The number of subterms of an initial
type is linear. The number of arguments of an initial type is also linear. Organizing each of
these linearly many arguments causes only a polynomial blowup. Therefore, it is clear that
the number of subterms of an organized argument of an initial type is polynomial. Let k
denote the number of subterms of the initial types plus the number of subterms of organized
arguments of the initial types. The total number of nonbasic constraints that the algorithm
considers is bounded by k2.

Because we use memoization to make sure that no constraint is considered more than once
by the algorithm and because during each iteration of the while-loop exactly one nonbasic
constraint is considered, it is clear that the loop is iterated at most k2 times. ut

Corollary 20 The size of a new constraint added to C during the execution of the while-loop of Alg. 2
is of polynomial size in the size of the set {τ1 ≤ σ1, . . . , τn ≤ σn} of constraints initially given to the
algorithm.

Proof: Lemma 18 shows that each type occurring in a newly added constraint is either a
subterm of an initial type or of an organized argument of an initial type. It is clear that each
of these subterms is of polynomial size. ut

Aggregating the results we obtain a non-deterministic polynomial upper bound:

26

Lemma 21 Algorithm 2 operates in nondeterministic polynomial time.

Proof: Corollary 19 shows that the while-loop is iterated a polynomial number of times.
It remains to show that every such iteration only causes polynomial cost in the input: The
reduction-step with respect to ω in line 6 can be implemented in linear time if it is done
bottom-up, removing every occurrence of ω as component in an intersection and replacing
empty intersections and arrows of the form ρ → ω by ω. The case in line 9 requires a check
whether c already holds. This can be done, using the PTIME-procedure for deciding subtyping
proposed by [15]. The other cases only require the construction of the new constraints which
clearly can be done in polynomial nondeterministic time. Consistency of C can also be checked
in polynomial time because it boils down to checking a polynomial number of subtyping
relations (without variables). Again, this can be done, using the PTIME-procedure mentioned
above. Corollary 20 shows that each added constraint is of polynomial size, which means that
each of the operations above can indeed be done in polynomial time. The memoization does
not exceed polynomial time because we have already seen that there is at most a polynomial
number of constraints, that are of polynomial size, that can possibly be considered.

Together with the termination-argument from Lem. 14 this shows that the algorithm oper-
ates in nondeterministic polynomial time. ut

We make some remarks about this proof:

Remark 22

1. The statement of the previous lemma might come as a surprise since the execution of the while-
loop requires a repeated organization of the arguments of the occurring types. It can be asked
why this repeated organization does not result in a normalization [10] of the types involved. As
mentioned before, this could cause an exponential blowup in the size of the type. The reason why
this problem does not occur is the fact that this organization is interleaved with decomposition
steps. We illustrate this by the following small example. We inductively define two families of
types:

τ0 = a0 ∩ b0 σ0 = α0

τl = τl−1 → (al ∩ bl) σl = σl−1 → αl

The size of τn in normalized form is exponential in n. However, if the algorithm processes
the constraint τn ≤ σn only a polynomial number of new constraints (of polynomial size) are
constructed: First, the types have to be organized. We obtain (τn−1 → an)∩ (τn−1 → bn) ≤ σn.
In the first iteration of the while-loop the case in line 20 applies and the nondeterministic choice
in line 21 may be resolved in such a way that a subset of components of the toplevel intersection
of (τn−1 → an) ∩ (τn−1 → bn) has to be chosen. In order to maximize the size of C we
choose both components which forces the construction of the following constraints: an ∩ bn ≤ αn,
σn−1 ≤ τn−1, and σn−1 ≤ τn−1. The last two constraints are the same, however, and therefore
the memoization of the algorithm makes sure that this constraint is only treated once. In the next

27

step the case in line 14 applies (note that τn−1 is a top-level intersection) and the constraints
σn−1 ≤ τn−2 → an−1 and σn−1 ≤ τn−2 → bn−1 are created. For both constraints the same rule
applies and causes a change of C according to line 32. This leads to the construction of the basic
constraints αn−1 ≤ an−1 and αn−1 ≤ bn−1 as well as to the construction of σn−2 ≤ τn−2 and
σn−2 ≤ τn−2. Then, the same argument as above can be repeated.

We conclude that the doubling of the arguments of the τl that occurs in the normalization (and
which eventually causes the exponential blowup if repeated) does not occur in the algorithm,
because the types involved are decomposed such that the arguments and targets are treated sep-
arately. This implies that the arguments cannot be distinguished any more such that the new
constraints coincide and are only added once.

2. The proof of Lem. 21 relies on the fact that every new nonbasic constraint added to C only contains
types that are essentially subterms of an initial type. A new intersection which possibly does not
occur as a subterm in any of the initial types has to be constructed in line 25, though. Since,
in principle, this new intersection represents a subset of an index set, it is not clear that there
cannot be an exponential number of such basic constraints. However, this construction of new
intersections only happens as a consequence to the nonbasic constraint that is treated there. As
noted above there can be at most a polynomial number of nonbasic constraints and therefore new
intersections can also only be introduced a polynomial number of times.

We now show correctness (soundness and completeness) of the algorithm, i.e., it can return
true if and only if the original set of constraints can be matched. We need some auxiliary
lemmas, first:

Lemma 23 Let τ be a type and let S be a substitution. Then S(τ) = S(τ)5.

Proof: We prove the statement by structural induction on the organization rules:
If τ is an atom, then τ = τ and nothing has to be proved. If τ = τ′ ∩ τ′′ we have S(τ) =

S(τ′) ∩ S(τ′′) = S(τ′) ∩ S(τ′′) = S(τ′ ∩ τ′′) = S(τ′ ∩ τ′′) = S(τ). If τ = τ′ → τ′′ with
τ′′ =

⋂
i∈I τ′′i we have S(τ) = S(τ′) → S(τ′′) = S(τ′) → S(τ′′) = S(τ′) → S(

⋂
i∈I τ′′i) =

S(τ′) → ⋂
i∈I S(τ′′i) =

⋂
i∈I(S(τ′) → S(τ′′i)) =

⋂
i∈I S(τ′ → τ′′i) = S(

⋂
i∈I(τ

′ → τ′′i)) = S(τ).
ut

The following two lemmas are derived using Lem. 1.

Lemma 24 Let τ =
⋂

i∈I τi,1 → . . . → τi,mi → pi be an organized type and let σ = σ1 → . . . →
σm → ρ be a type. τ ≤A σ if and only if there is a nonempty subset I′ ⊆ I such that for all i ∈ I′ and
all 1 ≤ j ≤ m we have σj ≤A τi,j and such that

⋂
i∈I′ τi,m+1 → . . .→ τi,mi → pi ≤A ρ.

Proof: We prove both directions by induction over m.

⇒: m = 0 : We have τ ≤A σ = ρ. Choosing I′ = I the statement holds because we have
τ =

⋂
i∈I τi,1 → . . .→ τi,mi → pi.

5 Equality refers to the identification of types σ and σ′ if both σ′ ≤A σ and σ ≤A σ′ hold.

28

m⇒ m + 1 : We have τ ≤A σ. We write σ = σ1 → σ′, i.e., σ′ = σ2 → . . . → σm+1 → ρ,
and τ =

⋂
j∈J pj ∩

⋂
i∈I′′ τi,1 → τ′i , i.e., J ⊆ I is the subset of I where τi is an atom

and τ′i = τi,2 → . . . → τi,mi → pi. Lemma 1 states that there is a nonempty subset
H of I′′ such that for all i ∈ H we have σ1 ≤A τi,1 and

⋂
i∈H τ′i ≤A σ′. The second

inequality can be rewritten as
⋂

i∈H τi,2 → . . .→ τi,mi → pi ≤A σ2 → . . .→ σm+1 →
ρ. Applying the induction hypothesis to this inequality we see that there is a subset
I′ of H such that for all i ∈ I′ and all 2 ≤ j ≤ m + 1 we have σj ≤A τi,j and such
that

⋂
i∈I′ τi,m+2 → . . . → τi,mi → pi ≤A ρ. Because I′ ⊆ H for all i ∈ I′ we have

σ1 ≤A τi,1 which is equivalent to σ1 ≤A τi,1. Therefore the choice I′ ⊆ I satisfies
the requirements in the lemma.

⇐: m = 0 : We get τ =
⋂

i∈I τi,1 → . . . → τi,mi → pi ≤A
⋂

i∈I′ τi,1 → . . . → τi,mi → pi ≤A ρ =
σ, where the first inequality follows from I′ ⊆ I and the second inequality follows
from the assumption.

m⇒ m + 1 : We write σ = σ1 → σ′, i.e., σ′ = σ2 → . . . → σm+1 → ρ, and τ =⋂
j∈J pj ∩

⋂
i∈I′′ τi,1 → τ′i , i.e., J ⊆ I is the subset of I where τi is an atom and

τ′i = τi,2 → . . .→ τi,mi → pi, and we assume that there is a nonempty subset I′ ⊆ I
such that for all i ∈ I′ and all 1 ≤ j ≤ m + 1 we have σj ≤A τi,j and such that⋂

i∈I′ τi,m+2 → . . . → τi,mi → pi ≤A ρ. We want to show τ ≤A σ, and according
to Lem. 1 we have to show that the subset H of I′′ with H = {i ∈ I′′|σ1 ≤A τi,1}
is nonempty and that

⋂
i∈H τ′i ≤A σ′. It is clear that I′ ⊆ H because for all i ∈ I′

we have σ1 = σ1 ≤A τi,1 = τi,1, and therefore H is nonempty. It remains to show⋂
i∈H τ′i ≤A σ′. We have

⋂
i∈H τ′i ≤A

⋂
i∈I′ τ

′
i =

⋂
i∈I′ τi,2 → . . . → τi,mi → pi ≤A

σ2 → . . . → σm+1 → ρ = σ′, where the first inequality uses I′ ⊆ H and the
second inequality follows from the induction hypothesis (note that the induction
hypothesis may indeed be applied because I′ itself has the desired properties).

ut

Lemma 25 Let τ = τ1 → . . . → τm → ρ be a type and let σ = σ1 → . . . → σn → p be a path with
m ≤ n. τ ≤A σ if and only if for all 1 ≤ j ≤ m we have σj ≤A τj and ρ ≤A σm+1 → . . .→ σn → p.

Proof: We prove both directions by induction over m.

⇒: m = 0 : We have τ ≤A σ and τ = ρ. This implies ρ ≤A σ1 → . . .→ σn → p.

m⇒ m + 1 : We write σ = σ1 → σ′, i.e., σ′ = σ2 → . . . → σn → p, and τ = τ1 → τ′,
i.e., τ′ = τ2 → . . . → τm+1 → ρ. We assume τ ≤A σ. Lemma 1 shows that this
is only possible if σ1 ≤A τ1 and τ′ ≤A σ′. The second inequality is equivalent to
τ2 → . . . → τm+1 → ρ ≤A σ2 → . . . → σn → p. Applying the induction hypothesis
we get σj ≤A τj for all 2 ≤ j ≤ m + 1 and ρ ≤A σm+2 → . . .→ σn → p.

⇐: m = 0 : We have τ = ρ ≤A σ1 → . . .→ σn → p = σ.

29

m⇒ m + 1 : We write σ = σ1 → σ′, i.e., σ′ = σ2 → . . . → σn → p, and τ = τ1 → τ′,
i.e., τ′ = τ2 → . . . → τm+1 → ρ, and we assume that for all 1 ≤ j ≤ m + 1 we
have σj ≤A τj and ρ ≤A σm+2 → . . . → σn → p. In order to show that τ ≤A σ
holds, according to Lem. 1 we have to show that τ1 ≤A σ1 and σ′ ≤A τ′ hold. The
first inequality holds by assumption and the second inequality follows from the
induction hypothesis.

ut

We start by proving soundness of Alg. 2. The following auxiliary lemma consists of a detailed
case analysis and states that every substitution that matches a set of constraints C′ resulting
from a set C by one execution of the while-loop also matches C.

Lemma 26 Let C be a set of constraints and let C′ be a set of constraints that results from C by
application of one of the cases of Alg. 2.

Every substitution that matches C′ also matches C.

Proof: For all cases C′ results from C by removing the constraint c and possibly by further
adding some new constraints. Assuming we have a substitution S matching C′, it suffices
to show that S satisfies c in order to show that it also satisfies C. We do this for all cases
separately:

Line 10: c does not contain any variables and τ ≤A σ. Thus, S matches c.

Line 15: We have σ =
⋂

i∈I σi and the constraints τ ≤ σi were added. Because S matches C′

we have S(τ) ≤A S(σi) for all i ∈ I. By idempotence and monotonicity of ∩ we get
S(τ) ≤A

⋂
i∈I S(σi) = S

(⋂
i∈I σi

)
= S(σ).6

For the remaining cases we have σ = σ1 → . . . → σm → a and τ =
⋂

i∈I τi with τi = τi,1 →
. . .→ τi,mi → pi.

Line 22: a = α is a variable and the constraint ω ≤ α was added. Because S matches C′ we
must have S(α) = ω. Then it is clear that S matches τ ≤ σ because S(σ) = S(σ1) →
. . .→ S(σm)→ ω = ω.

Line 24: a = α is a variable and σj ≤ τi,j for all i ∈ I′ and all 1 ≤ j ≤ m and
⋂

i∈I′ τi,m+1 →
. . . → τi,mi → pi ≤ α were added. Since S matches C′ we know S(σj) ≤A τi,j and⋂

i∈I′ τi,m+1 → . . . → τi,mi → pi ≤A S(α). We want to show τ ≤A S(σ). We write
S(σ) = σ′1 → . . . → σ′m → ρ where S(σj) = σ′j and S(α) = ρ. We have σ′j = σ′j = S(σj) =

S(σj) ≤A τi,j where the third equality follows from Lem. 23. We may apply the “if”-part
of Lem. 24 to conclude τ ≤A S(σ).

6 No argument is necessary for the special case σ = ω, i.e., I = ∅, because no new constraints are added.

30

Line 28: a is a constant and the constraints σj ≤ τi0,j for all 1 ≤ j ≤ m and pi0 ≤ a were added.
Since S matches C′ we know S(σj) ≤A τi0,j for all 1 ≤ j ≤ m and pi0 ≤A a. The second
inequality implies pi0 = a. On the other hand, using Lem. 23 we get S(σj) = S(σj) ≤A
τi0,j = τi0,j for all 1 ≤ j ≤ m. Lemma 2 implies τ ≤A S(σ) and S matches c.

Line 32: The constraints σj ≤ τi0,j for all 1 ≤ j ≤ mi0 and pi0 ≤ σmi0+1 → . . . → σm → a were
added. Because S matches C′ we know σj ≤A S(τi0,j) and S(pi0) ≤A σmi0+1 → . . . →
σm → a. This implies σj = σj ≤A S(τi0,j) = S(τi0,j), the last equality again following
from Lem. 23. We may apply the “if”-part of Lem. 25 to conclude S(τi0) ≤A σ. Because
S(τi0) is a component of S(τ) it is clear that S(τ) ≤A S(τi0) ≤A σ. Therefore, S matches
τ ≤ σ.

ut

The following corollary uses the previous lemma as well as the result of Lem. 12 which states
that a set of basic constraints is consistent if and only if it is matchable:

Corollary 27 Algorithm 2 is sound.

Proof: Assume that the algorithm returns true. This is only possible in line 36 if the algo-
rithm leaves the while-loop with a consistent set C of basic constraints. By the “if”-direction
of Lem. 12, C is matchable. Using Lem. 26, an inductive argument shows that all sets of con-
straints considered in the algorithm during execution of the while-loop are matchable. This is
in particular true for the initial set of constraints. ut

For proving completeness we need an auxiliary lemma which states that for a matchable set
of constraints a choice can be made in the while-loop such that the resulting set of constraints
is also matchable. Again, the proof comes down to a detailed case analysis.

Lemma 28 Let C be matchable and c ∈ C.
There exists a set of constraints C′ such that C′ results from C by application of one of the cases of

Alg. 2 to c and C′ is matchable.

Proof:
We show that no matter which case applies to c, a choice can be made that results in a

matchable set C′. In particular, it must be argued that there is a choice that does not result in
false.

Furthermore, note that for all cases C′ results from C by removing c and by possibly adding
some new constraints. Let S be a substitution that matches C. In order to show that it also
matches C′ it suffices to show that it matches the newly introduced constraints. If there are no
new constraints we do not have to show anything.

Line 8: c does not contain any variables. Because C is matchable c holds and the case results
in the set C′ = C\{c} (line 10) and not in false.

31

Line 14: σ =
⋂

i∈I σi and C′ = C\{c} ∪ {τ ≤ σi|i ∈ I}. We have to show S(τ) ≤A S(σi) for
all i ∈ I. This holds if and only if S(τ) ≤A

⋂
i∈I S(σi). But this clearly holds because⋂

i∈I S(σi) = S(σ) and S matches c.7

For the remaining cases we have σ = σ1 → . . . → σm → a and τ =
⋂

i∈I τi with τi = τi,1 →
. . .→ τi,mi → pi.

Line 19: σ contains variables and τ does not. We distinguish cases:

a ∈ V: We know that S matches τ ≤ σ. If S(a) = ω, in line 21 we choose the first option.
Then, the only new constraint is ω ≤ a which is clearly matched by S.

Otherwise, i.e., S(a) 6= ω, the second option is chosen. Because τ ≤A S(σ) holds
we may apply the “only if”-part of Lem. 24 to conclude that there is a nonempty
subset I′ of I such that for all i ∈ I′ and all 1 ≤ j ≤ m we have S(σj) ≤A τi,j and
such that

⋂
i∈I′ τi,m+1 → . . . → τi,mi → pi ≤A S(a). This implies in particular that

for all i ∈ I′ we have mi ≥ m, and thus we may choose I′ ⊆ I2 ∪ I3 in line 23. From
S(σj) ≤A τi,j we infer S(σj) = S(σj) = S(σj) ≤A τi,j where the first equality holds
because of Lem. 23. This shows that S matches all newly introduced constraints.

a /∈ V: Because a /∈ V we know that S(σ) is still a path. Thus, using τ ≤A S(σ) together
with Lem. 2 we conclude that there exists an index i0 ∈ I such that mi0 = m, pi0 = a,
and S(σj) ≤A τi0,j for all j ≤ m. Therefore, in line 27 we may choose exactly this
i0 (note that i0 is indeed contained in I2 because mi0 = m). Using Lem. 23, we
conclude S(σj) ≤A τi0,j for all j ≤ m from S(σj) ≤A τi0,j and from pi0 = a we
conclude pi0 = S(a). Therefore, all newly introduced constraints are matched by S.

Line 30: We know S(τ) ≤A σ. Write S(τ) =
⋂

h∈H ρh,1 → . . . → ρh,nh
→ bh. Applying Lem. 2

to S(τ) ≤A σ, we conclude that there exists h0 ∈ H with bh0 = a, nh0 = m, and σl ≤A ρh0,l
for all 1 ≤ l ≤ m. Note that with πh0 = ρh0,1 → . . . → ρh0,m → a this implies πh0 ≤A σ.
For πh0 there must be an index j0 ∈ I such that πh0 occurs as a component in S(τj0). It
is clear that mj0 ≤ m. Otherwise all paths in this type would be of length greater than m
(neither a substitution nor an organization may reduce the length of a path). Thus, j0 as
above is contained in I1 ∪ I2 (cf. line 18), and we may choose i0 = j0 in line 31.

We have to show that S matches σl ≤ τj0,l for all 1 ≤ l ≤ mj0 and pj0 ≤ σmj0+1 →
. . . → σm → a. Because πh0 is a component in S(τj0), it is clear that πh0 ≤A σ implies
S(τj0) ≤A σ and, thus, also S(τj0) ≤A σ. Applying the “only if”-part of Lem. 25 to
S(τj0,1) → . . . → S(τj0,mj0

) → S(pj0) = S(τj0) ≤A σ = σ1 → . . . → σm → a, we obtain
σl ≤A S(τj0,l) for all 1 ≤ l ≤ mj0 and S(pj0) ≤A σmj0+1 → . . . → σm → a. We get
σl = σl ≤A S(τj0,l) = S(τj0,l), the last equality following from Lem. 23. Altogether this
shows that S matches the newly introduced constraints.

7 For the special case σ = ω, i.e., I = ∅, no new constraints are added.

32

ut

This lemma together with Lem. 12 proves the following corollary:

Corollary 29 Algorithm 2 is complete.

Proof: We assume that the initial set C of constraints is matchable. We have to show that there
is an execution sequence of the algorithm that results in true. Using Lem. 28 in an inductive
argument it can be shown that for every iteration of the while-loop it is possible to make the
nondeterministic choice in such a way that the iteration results in a matchable set of constraints.
Thus, there is an execution sequence of the while-loop that results in a matchable set of basic
constraints. Lemma 12 shows that this set is consistent and therefore the algorithm returns
true. ut

Corollary 30 Algorithm 2 is correct.

Proof: Immediate from Cor.(s) 27 and 29. ut

Summarizing the results we get the main theorem of this chapter:

Theorem 31 cMATCH is NP-complete.

Proof: Immediate from Cor.(s) 9 and 30 and Lem. 21. ut

33

5M AT C H I N G - B A S E D O P T I M I Z AT I O N S

Matching can be used to further optimize Alg. 1. First (Sect. 5.1), we filter out types in Γ that
cannot contribute to inhabiting τ due to a failing matching condition. Second (Sect. 5.2), we
further filter the types by a lookahead check, against new inhabitation targets, for a necessary
matching condition.

Note that variables occurring in all inhabitation goals can be considered to be constants,
because we may only instantiate variables occurring in Γ. Whenever a combinator (x : σ) is
chosen from Γ we may assume that all variables occurring in σ are fresh. Thus, indeed, we
face matching problems.

5.1 matching optimization

Algorithm 3 below checks for every target of every component σj of σ and τi of the inhabitation
goal τ whether the constraint consisting of the corresponding target and τi is matchable. The
τi can be inhabited by different components of σ. The number n of arguments, however, has
to be the same for all i. This condition leads to the construction of N in line 10. Note that we
may need to compute tgtn(σj) in line 8 where n is larger than mj := ‖σj‖. Any such call to
Alg. 2 in this line is assumed to return false if tgtmj

(σj) is a type constant. If tgtmj
(σj) = α, then

we check matchability of α ≤ τi. The following lemma shows that, indeed, it suffices to only
consider n with n ≤ ‖σ‖+ k in lines 7 and 10.

Lemma 32 Let σ be an organized type and let S be a level-k substitution.
We have ‖S(σ)‖ ≤ ‖σ‖+ k.

Proof: Let σ1 → . . . → σm → α be a longest path in σ whose target is a variable. Note that
m ≤ ‖σ‖. The worst case is that S(α) is a path of length k. In this case we have ‖S(σ1)→ . . .→
S(σm) → S(α)‖ = m + k. There are two cases: If S(σ1) → . . . → S(σm) → S(α) is a longest
path in S(σ), then we have ‖S(σ)‖ = m + k ≤ ‖σ‖+ k. Otherwise we a longest path in S(σ)
must have been created by instantiating a longest path in σ, and such a path must be longer
than m (and it does not have a variable in the target!). We conclude ‖S(σ)‖ = ‖σ‖ ≤ ‖σ‖+ k.

ut

We need an adaptation of Lem. 5 to prove the correctness of Alg. 3.

Lemma 33 Let τ be a path and let x : σ ∈ Γ where σ =
⋂

j∈J σj is organized.
The following are equivalent conditions:

1. Γ `k x e1 . . . em : τ

35

Algorithm 3 INH2(Γ, τ, k)

1: Input: Γ, τ, k — wlog: All types in Γ and τ =
⋂

i∈I τi are organized
2: Output: INH2 accepts iff ∃e such that Γ `k e : τ
3:

4: loop:
5: CHOOSE (x : σ) ∈ Γ;
6: write σ =

⋂
j∈J σj

7: for all i ∈ I, j ∈ J, n ≤ ‖σ‖+ k do
8: candidates(i, j, n) := Match(tgtn(σj) ≤ τi)
9: end for

10: N := {n ≤ ‖σ‖+ k | ∀i∈I∃j∈J : candidates(i, j, n) = true}
11: CHOOSE n ∈ N;
12: for all i ∈ I do
13: CHOOSE ji ∈ J with candidates(i, ji, n) = true
14: CHOOSE Si ∈ S

(Γ,τi ,k)
x

15: CHOOSE πi ∈ Pn(Si(σji))
16: end for
17:

18: if ∀i∈I : tgtn(πi) ≤A τi then
19: if n = 0 then
20: ACCEPT;
21: else
22: FORALL (l = 1 . . . n) τ :=

⋂
i∈I argl(πi);

23: GOTO loop;
24: end if
25: else
26: FAIL;
27: end if

2. There exists S ∈ S (Γ,τ,k)
x and a path π ∈ Pm(Sτ(σ)) such that

a) tgtm(π) ≤A τ;

b) Γ `k el : argl(π), for all l ≤ m.

3. There exists j ∈ J, S ∈ S (Γ,τ,k)
x , and π ∈ Pm(S(σj)) such that

a) tgtm(π) ≤A τ;

b) Γ `k el : argl(π), for all l ≤ m.

Proof: The implication 1.⇒ 2. follows from Cor. 5.

36

We want to prove 2. ⇒ 3 : Denote by S′ and π′ the substitution and path in condition 2.
Because Pm(S′(σ)) = Pm(

⋂
j∈J S′(σj)) it is clear that there is an index j′ such that π′ occurs in

S′(σj′). Choosing j = j′, S = S′, and π = π′, the conditions clearly hold.
The implication 3.⇒ 1. follows from a suitable application of the type rules. ut

We get the following corollary:

Corollary 34 Let τ =
⋂

i∈I τi be organized and let (x : σ) ∈ Γ where σ =
⋂

j∈J σj is also organized.
The following are equivalent conditions:

1. Γ `k x e1 . . . em : τ

2. For all i ∈ I there exist ji ∈ J, Si ∈ S
(Γ,τi ,k)
x , and πi ∈ Pm(Si(σji)) with

a) tgtm(πi) ≤A τi;

b) Γ `k el :
⋂

i∈I argl(πi), for all l ≤ m.

Proof: It is clear that Γ `k x e1 . . . em : τ is equivalent to Γ `k x e1 . . . em : τi for all i ∈ I. An
application of the equivalence of conditions 1. and 3. of Lem. 33 shows that this is equivalent
to the following condition: For all i ∈ I there exist ji ∈ J, Si ∈ S

(Γ,τi ,k)
x , and πi ∈ Pm(Si(σji))

such that

1. tgtm(πi) ≤A τi;

2. Γ `k el : argl(πi), for all l ≤ m.

With these choices this condition is equivalent to condition 2. of the corollary. ut
Algorithm 3 is a direct realization of condition 2. of the corollary above. This proves the
correctness of the algorithm. Because cMATCH is in NP the complexity of Alg. 3 remains
unchanged. Again, a combinatorial consideration shows that this optimization can lead to
very large speed-ups since it prevents the consideration of useless substitutions.

5.2 matching optimization using lookahead

Finally, we describe an optimization of Alg. 3 which has turned out experimentally to be
immensely powerful, causing speed-ups of up to 16 orders of magnitude in some examples.
The idea is to formulate a necessary condition whose violation shows that a newly generated
inhabitation question cannot be solved. In this case the combination of choices of ji, Si, and
πi can be rejected before any new inhabitation goal is instantiated. Basically, the condition
states that the choice of the path πi of length n in line 15 of Alg. 3 is only meaningful if for all
1 ≤ l ≤ n and all paths π′ in argl(πi) there exists (y : ρ) ∈ Γ such that ρ has a path ρ′ that has
a target tgtm(ρ

′) for some m for which Match(tgtm(ρ
′) ≤ π′) returns true. If there is no such

(y : ρ), then
⋂

i∈I argl(πi) cannot be inhabited and the check in line 8 does not succeed for any
combination. We need an auxiliary lemma:

37

Lemma 35 Let τ be a type and let ρ = ρ1 → . . . → ρr → a be a path. Let S be a substitution. Let
π ∈ Pm(S(ρ)) such that tgtm(π) ≤A τ.

There exist h ≤ r and a substitution S′ such that S′(tgth(ρ)) ≤A τ. Furthermore, l(S′) ≤ l(S) and
any constants occurring in the image of S′ also occur in the image of S.

Proof: We distinguish two cases:

a ∈ V: Write a = α, i.e., ρ1 → . . .→ ρr → α. Again we distinguish two cases:

m ≤ r: Then we can write tgtm(π) = S(ρm+1) → . . . → S(ρr) → πr+1 → . . . → πs →
b ≤A τ, where πr+1 → . . . → πs → b is a component in S(α). Choosing h = m
and S′ = S, we get S′(tgth(ρ)) = S(tgtm(ρ)) = S(tgtm(ρ)) = S(ρm+1 → . . .→ ρr →
α) = S(ρm+1)→ . . .→ S(ρr)→ S(α) ≤A S(ρm+1)→ . . .→ S(ρr)→ πr+1 → . . .→
πs → b ≤A τ where the first inequality follows because πr+1 → . . . → πs → b is a
component in S(α).

m > r: Then, we can write π = S(ρ1) → . . . → S(ρr) → πr+1 → . . . → πs → b, where
πr+1 → . . . → πs → b is a component in S(α). We get tgtm(π) = πm+1 → . . . →
πs → b ≤A τ. We choose h = r and we define S′ = {α 7→ πm+1 → . . . → πs → b}.
Then we have S′(tgth(ρ)) = S′(α) = πm+1 → . . .→ πs → b ≤A τ.

a /∈ V: We have S(ρ) = S(ρ1) → . . . → S(ρr) → a. Thus, m ≤ r and tgtm(π) = S(ρm+1) →
. . . → S(ρr) → a ≤A τ. Choosing h = m and S′ = S, we get S′(tgth(ρ)) = S(tgtm(ρ)) =
S(ρm+1 → . . .→ ρr → a) = S(ρm+1)→ . . .→ S(ρr)→ a ≤A τ.

It is clear that l(S′) ≤ l(S) and that the statement about the constants in the image of S′ holds.
ut

The following lemma formalizes the necessary condition for a type τ to be inhabited:

Lemma 36 Assume Γ `k e : τ, where τ is a path and all types in Γ are organized.
There exist (y : ρ) ∈ Γ, a path ρ′ in ρ, S′ ∈ S (Γ,τ,k)

x , and h ≤ ‖ρ′‖ such that S′(tgth(ρ
′)) ≤A τ.

Proof: We write e = x e1 . . . em and we use the only-if direction of Corollary 34 to conclude
that there exists an (x : σ) ∈ Γ, j ∈ J, S ∈ S (Γ,τ,k)

x , and π ∈ Pm(S(σj)) with tgtm(π) ≤A τ.
Thus, setting (y : ρ) = (x : σ), we know that there exist (y : ρ) ∈ Γ, a path ρ′ in ρ (note that
ρ′ = σj), S ∈ S (Γ,τ,k)

x , and π ∈ Pm(S(ρ′)) with tgtm(π) ≤A τ. Applying Lemma 35 we get the
statement of the lemma. ut

Correctness of the ATM in Fig. 4 follows because it is a direct implementation of the condition
of Corollary 34 and combines it with the necessary condition stated in Lemma 36. Note that
in line 15 we incorporate the check of the necessary condition and of tgtn(πi) ≤A τi (condition
2.a) of Corollary 34) into the choice of πi in Alg. 4. Note that this makes the if-block in line 18

and the corresponding FAIL-statement in line 26 of Alg. 3 obsolete.

38

Algorithm 4 INH3(Γ, τ, k)

1: Input: Γ, τ, k — wlog: All types in Γ and τ =
⋂

i∈I τi are organized
2: Output: INH3 accepts iff ∃e such that Γ `k e : τ
3:

4: loop:
5: CHOOSE (x : σ) ∈ Γ;
6: write σ =

⋂
j∈J σj

7: for all i ∈ I, j ∈ J, n ≤ ‖σ‖+ k do
8: candidates(i, j, n) := Match(tgtn(σj) ≤ τi)
9: end for

10: N := {n ≤ ‖σ‖+ k | ∀i∈I∃j∈J : candidates(i, j, n) = true}
11: CHOOSE n ∈ N;
12: for all i ∈ I do
13: CHOOSE ji ∈ J with candidates(i, ji, n) = true
14: CHOOSE Si ∈ S

(Γ,τi ,k)
x

15: CHOOSE πi ∈ Pn(Si(σji)) such that tgtn(πi) ≤A τi and for all 1 ≤ l ≤ n
16: and all π′ ∈ argl(πi) there exists (x : ρ) ∈ Γ, a path ρ′ in ρ, and m such
17: that Match(tgtm(ρ

′) ≤ π′) = true
18: end for
19:

20: if n = 0 then
21: ACCEPT;
22: else
23: FORALL (l = 1 . . . n) τ :=

⋂
i∈I argl(πi);

24: GOTO loop;
25: end if

5.3 implementation and example

We implemented our inhabitation algorithms in the .NET-framework (C# and F#) for bcl0 and
conducted experiments. We briefly discuss the results by means of a few examples. These
results, in particular, illustrate the impact of the lookahead-strategy.

Example 37 We discuss an example, first, which will then be generalized in order to compare the mean
execution times of the two previous algorithms.

1. We consider a small repository for synthesizing functions in the ring Z4. It contains the identity
function and the successor as well as the predecessor functions in Z4. Furthermore, there is a
composition combinator c that computes the composition of three functions. All functions are
coded by an intersection type that basically lists their function table. The type constant f denotes

39

that the corresponding combinator is a function. It is not strictly necessary, however, here we
introduce it to avoid self-applications of c.

Γ = {id : f ∩ (0→ 0) ∩ (1→ 1) ∩ (2→ 2) ∩ (3→ 3),

succ : f ∩ (0→ 1) ∩ (1→ 2) ∩ (2→ 3) ∩ (3→ 0),

pred : f ∩ (0→ 3) ∩ (1→ 0) ∩ (2→ 1) ∩ (3→ 2),

c :
(

f ∩ (α→ β)
)
→
(

f ∩ (β→ γ)
)
→
(

f ∩ (γ→ δ)
)
→ (α→ δ)}

The implementation of Alg. 4 solved the inhabitation question

Γ `0 ? : (0→ 2) ∩ (1→ 3) ∩ (2→ 0) ∩ (3→ 1),

i.e., it synthesized functions realizing the addition of 2 over Z4, in less than two seconds on a
computer with a quad core 2.0 GHz CPU and 8 GB RAM. The implementation produces all six
inhabitants which are:

a) c(id, succ, succ)

b) c(succ, id, succ)

c) c(succ, succ, id)

d) c(pred, pred, id)

e) c(id, pred, pred)

f) c(pred, id, pred)

Figure 5.1 depicts the graphical output produced by our implementation applied to this exam-
ple, enumerating the six inhabitants. The inner nodes represent functional combinators whose
children are the arguments. Leaves are 0-ary combinators, which, in this example, are the three
functions id, succ, and pred.

We estimate the number of new inhabitation questions Alg. 3 would have to generate: Ignoring
the type constant f for simplicity, a level-0 substitution can map a variable into 24 − 1 types
(every nonempty subset of {0, 1, 2, 3} represents an intersection). Thus, there are 154 = 50 625
substitutions. In lines 12–16 such a substitution has to be chosen four times. This results in
at least (154)4 ≈ 6.6× 1018 new inhabitation goals. Even for this rather small example the
2-EXPTIME-bound makes Alg. 1 infeasible.

It is easy to see that many of the 50 625 possible substitutions will not help to inhabit (0 →
2) ∩ (1→ 3) ∩ (2→ 0) ∩ (3→ 1). For example, trying to inhabit the component (0→ 2), no
instantiation of c where α 7→ 0 and δ 7→ 2 ∩ τ0 where τ0 is any level-0 type constructed from
0, 1, and 3, does not hold will fail. This check is incorporated by the first condition of the choice
in line 15 of Alg. 4. It reduces the possible number of 50 625 solutions. However, the lookahead
strategy checking the arguments and therefore eliminating infeasible substitutions in advance has
the greatest impact because it greatly reduces the combinations of these substitutions that have to
be considered. In total, an implementation of Alg. 4 constructed 3889 inhabitation questions to
synthesize all solutions to the inhabitation question above.

40

c

id succ succ

Solution 1

c

succ id succ

Solution 2

c

succ succ id

Solution 3

c

pred pred id

Solution 4

c

id pred pred

Solution 5

c

pred id pred

Solution 6

Figure 5.1: Solutions generated by the implementation of Alg. 4

2. We generalize the previous example by defining the following parametrized type environment:

Γm
n := {id : f ∩ (0→ 0) ∩ . . . ∩

(
(n− 1)→ (n− 1)

)
,

succ : f ∩ (0→ 1) ∩ . . . ∩
(
(n− 1)→ 0

)
,

pred : f ∩
(
0→ (n− 1)

)
∩ . . . ∩

(
(n− 1)→ (n− 2)

)
,

cm :
(

f ∩ (α0 → α1)
)
→ . . .→

(
f ∩ (αm−1 → αm)

)
→ (α0 → αm)}

We ask the following inhabitation question (this time, synthesizing addition of 2 in Zn):

Γm
n `0 ? : (0→ 2) ∩ (1→ 3) ∩ . . . ∩

(
(n− 1)→ 1

)
Table 5.1 compares the number of new inhabitation goals (#ig) to be generated as well as the mean
execution time (ET) and the standard deviation (sd) of Alg.(s) 3 and 4 for some values of n and
m. We aggregated the information over a sample of four. In some cases, as can be seen by the
foregoing discussion, we can only estimate the corresponding numbers for Alg. 3, because it is
not possible to wait for the result. The corresponding entries marked by an asterix are estimates
for the least number of inhabitation goals to be generated respectively for the mean execution time.

A few comments about the figures are to be made. One might ask why Alg. 4 is slower than Alg. 3
for n = m = 2 even though the number of inhabitation goals to be generated is much smaller. This
can be explained by the fact that the lookahead-optimization itself requires some computational effort
which for very small examples may be significant. However, with increasing values for n and m the
improvement is obvious. Furthermore, the estimated figures are only very rough lower bounds. First,

41

n m Algorithm #ig ET/ms sd/ms

2 2 3 73 84.25 0.375
2 2 4 9 96.75 4.25

3 2 3 43 905 29 631 127.5
3 2 4 55 121 1

3 3 3 4× 107∗ 5.9× 107∗ -
3 3 4 2188 364 8.5

4 2 3 1.3× 1014∗ 1.9× 1014∗ -
4 2 4 33 197 0.5

4 3 3 6.6× 1018∗ 9.8× 1018∗ -
4 3 4 3889 2270 12.5

Table 5.1: Experimental results for Γm
n

we only estimated the inhabitation goals that have to be generated in the very first step. Second, for the
execution time we only used a linear model to estimate the execution time required for one inhabitation
goal. This assumption is not very realistic, because it should be expected that the execution time per goal
increases exponentially with larger values for n and m.

We would like to point out that even for this rather small example, the figures illustrate the explosive-
ness of the 2-Exptime-complexity of the algorithms.

42

6C O N C L U S I O N

This technical report contains the detailed proofs accompanying the paper of the same title. We
provide an NP-completeness proof for the intersection type matching problem. Amongst oth-
ers we use this result to incrementally formulate various optimizations for the ATM deciding
inhabitation in bclk that was presented in [6].

Future work includes more specific optimizations and more experiments. For example, our
experiments suggest that any optimization that reduces the number of substitutions that have
to be generated can have a great impact (the earlier in the algorithm this number can be re-
duced the better). For example, considering multistep-lookahead (looking several steps ahead)
might further improve the runtime of the algorithm for many practical applications. Of inde-
pendent theoretical interest is satisfiability over ≤A.

43

B I B L I O G R A P H Y

[1] Barendregt, H., Coppo, M., and Dezani-Ciancaglini, M. A Filter Lambda Model and
the Completeness of Type Assignment. Journal of Symbolic Logic 48, 4 (1983), 931–940.

[2] Chandra, A. K., Kozen, D. C., and Stockmeyer, L. J. Alternation. Journal of the ACM 28,
1 (1981), 114–133.

[3] Coppo, M., and Dezani-Ciancaglini, M. An extension of basic functionality theory for
lambda-calculus. Notre Dame Journal of Formal Logic 21 (1980), 685–693.

[4] Dezani-Ciancaglini, M., and Hindley, R. Intersection Types for Combinatory Logic.
Theoretical Computer Science 100, 2 (1992), 303–324.

[5] Düdder, B., Garbe, O., Martens, M., Rehof, J., and Urzyczyn, P. Using Inhabitation in
Bounded Combinatory Logic with Intersection Types for GUI Synthesis. In Proceedings of
ITRS’12 (2012).

[6] Düdder, B., Martens, M., Rehof, J., and Urzyczyn, P. Bounded Combinatory Logic. In
Proceedings of CSL’12 (2012), vol. 16 of LIPIcs, Schloss Dagstuhl, pp. 243–258.

[7] Düdder, B., Martens, M., Rehof, J., and Urzyczyn, P. Bounded Combina-
tory Logic (Extended Version). Tech. Rep. 840, Faculty of Computer Science
(TU Dortmund), 2012. http://ls14-www.cs.tu-dortmund.de/index.php/Jakob_Rehof_

Publications#Technical_Reports.

[8] Düdder, B., Martens, M., Rehof, J., and Urzyczyn, P. Using Inhabitation in Bound-
ed Combinatory Logic with Intersection Types for Synthesis. Tech. Rep. 842, Faculty of
Computer Science (TU Dortmund), 2012. http://ls14-www.cs.tu-dortmund.de/index.php/
Jakob_Rehof_Publications#Technical_Reports.

[9] Frey, A. Satisfying Subtype Inequalities in Polynomial Space. Theor. Comput. Sci. 277, 1-2
(2002), 105–117.

[10] Hindley, J. R. The Simple Semantics for Coppo-Dezani-Sallé Types. In International
Symposium on Programming (1982), M. Dezani-Ciancaglini and U. Montanari, Eds., vol. 137

of LNCS, Springer, pp. 212–226.

[11] Hindley, J. R., and Seldin, J. P. Lambda-calculus and Combinators, an Introduction. Cam-
bridge University Press, 2008.

[12] Niehren, J., Priesnitz, T., and Su, Z. Complexity of Subtype Satisfiability over Posets.
In Proceedings of ESOP’05 (2005), vol. 3444 of LNCS, Springer, pp. 357–373.

45

http://ls14-www.cs.tu-dortmund.de/index.php/Jakob_Rehof_Publications#Technical_Reports
http://ls14-www.cs.tu-dortmund.de/index.php/Jakob_Rehof_Publications#Technical_Reports
http://ls14-www.cs.tu-dortmund.de/index.php/Jakob_Rehof_Publications#Technical_Reports
http://ls14-www.cs.tu-dortmund.de/index.php/Jakob_Rehof_Publications#Technical_Reports

[13] Papadimitriou, C. H. Computational Complexity. Addison-Wesley, 1994.

[14] Rehof, J. The Complexity of Simple Subtyping Systems. PhD thesis, DIKU, Depart-
ment of Computer Science, 1998. http://ls14-www.cs.tu-dortmund.de/images/a/ac/

ComplexityOfSimpleSubtypingSystems.pdf .

[15] Rehof, J., and Urzyczyn, P. Finite Combinatory Logic with Intersection Types. In Pro-
ceedings of TLCA’11 (2011), vol. 6690 of LNCS, Springer, pp. 169–183.

[16] Statman, R. Intuitionistic Propositional Logic Is Polynomial-space Complete. Theoretical
Computer Science 9 (1979), 67–72.

[17] Tiuryn, J. Subtype Inequalities. In Proceedings of LICS’92 (1992), IEEE Computer Society,
pp. 308–315.

[18] Urzyczyn, P. The Emptiness Problem for Intersection Types. Journal of Symbolic Logic 64,
3 (1999), 1195–1215.

46

http://ls14-www.cs.tu-dortmund.de/images/a/ac/ComplexityOfSimpleSubtypingSystems.pdf
http://ls14-www.cs.tu-dortmund.de/images/a/ac/ComplexityOfSimpleSubtypingSystems.pdf

Forschungsberichte
der Fakultät für Informatik

der Technischen Universität Dortmund

ISSN 0933-6192

Anforderungen an:
Dekanat Informatik | TU Dortmund

D-44221 Dortmund

	Abstract
	Contents
	Introduction
	Preliminaries
	Intersection Types
	Alternating Turing Machines

	Bounded Combinatory Logic
	Type System
	Inhabitation

	Intersection Type Matching
	Lower Bound
	Upper Bound

	Matching-based Optimizations
	Matching Optimization
	Matching Optimization Using Lookahead
	Implementation and Example

	Conclusion
	Bibliography

